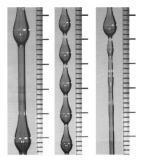
Instabilities of a thin coating on a vertical fibre; Newtonian, shear-thinning, and elastic liquids

Liyan Yu & John Hinch


CMS-DAMTP, University of Cambridge

October 10, 2015

and Claire McIlroy for elastic liquids

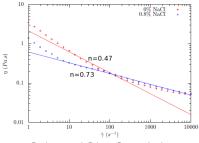
Motivation

Manufacture of polymeric and optical fibres.

Newtonian

Shear-thinning Duprat, Ruyer-Quil & Giorgiutti-Dauphiné

Kliakhandler, Davis & Bankoff JFM 2001


Phys. Fluids 2009

The coating fluid is often non-Newtonian

Constitutive equation


Power-law viscosity:
$$\mu = \beta \left| rac{\partial u}{\partial y} \right|^{n-1}$$

Xanthan solutions

Boulogne et al, Private Communication

Constitutive equation

Lubrication framework

Capillary pressure:
$$p = -\gamma \left(\frac{h}{a^2} + h_{xx}\right)$$

Momentum: $0 = -\frac{dp}{dx} + \rho g + \frac{\partial \sigma_{xy}}{\partial y}$
Volume flux: $Q = \beta^{-\frac{1}{n}} \frac{n}{2n+1} \left(\rho g - \frac{dp}{dx}\right)^{\frac{1}{n}} h^{(2+\frac{1}{n})}$
Note: $(\cdot)^{\frac{1}{n}} = \operatorname{sign}(\cdot) |\cdot|^{\frac{1}{n}}$

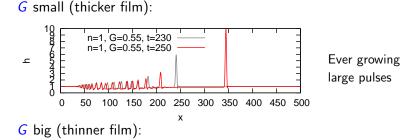
Mass conservation: $h_t + Q_x = 0$

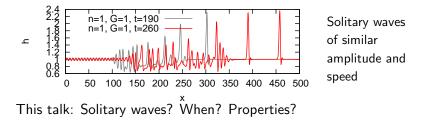
Non-dimensionalisation

Lengthscales:

- Fibre radius, *a*, in *x* direction.
- Initial film thickness, h_0 , in y direction.

Time:


• Rayleigh instability,
$$\frac{2n+1}{n} \left(\frac{\beta a^{n+3}}{\gamma h_0^{n+2}} \right)^{\frac{1}{n}}$$
.


$$h_t + \left(h^{2+\frac{1}{n}}(G + (h + h_{xx})_x)^{\frac{1}{n}}\right)_x = 0$$

where Bond number $G = \frac{\rho g a^3}{\gamma h_0}$.

Time-dependent numerical simulations

Periodic forcing at inlet: $\omega = 1$

Governing equations

In the frame of the solitary waves travelling with speed c:

$$(G + (h + h_{xx})_x) = rac{\left(c(h-1) + G^{rac{1}{n}}
ight)^n}{h^{2n+1}}$$

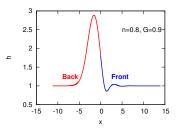
 $h o 1, \quad ext{as} \quad x o \pm \infty$

Numerically construct the stationary solitary waves.

- Integrate from x = −∞ to x = 0, and from x = +∞ to x = 0.
- Hence need starting conditions at $x = \pm \infty$.

Initial conditions for numerics

At $x = \pm \infty$: $h \sim 1 + \tilde{h}$ with $\tilde{h} \ll 1$. Linearised equation:

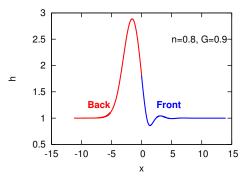

$$ilde{h}'''+ ilde{h}'-A ilde{h}=0$$

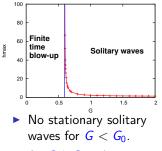
where
$$A = nG^{1-1/n}c - (2n+1)G > 0$$
.

Three solutions of exponential form:

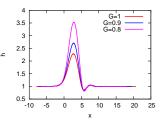
•
$$\tilde{h}_{2,3} = a_{2,3} e^{m_{2,3}x}$$

 $m_{2,3}$ complex conjugates with
negative real part: decaying
modes.


Use in 'Front' (2 DoF).

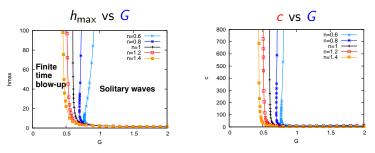

Numerical construction

For fixed G:


- 1. Shoot from Back, with $a_2 = a_3 = 0$. Stop when h'' = 0, h' < 0.
- 2. Shoot from Front, with $a_1 = 0$. Stop when h'' = 0, h' < 0, h > 1.5.
- 3. Vary the phase of $a_{2,3}$ in Front to match *h*.
- 4. Vary speed c to match h'.

Results: n = 1 Kalliadasis & Chang, J. Fluid Mech. 1994

▶ As
$$G \downarrow G_{0+}$$
, $h_{\max} \to \infty$

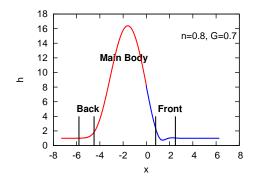

 Width of the 'Main Body' independent of G.

Agreement with experiment Quéré, Europhys. Lett. 1990:

• Critical h_c to observe disturbance $\propto a^3$.

•
$$G = rac{
ho ga^3}{\sigma h_0} \Rightarrow h_c \propto a^3$$
 at $G = G_0$.

Results: various n (shear-thinning and shear-thickening)


• Two branches of solutions for n < 1.

Look at large fast stationary solitary waves close to G_0 .

What determines critical G_0 ? Relationship of h and c with G?

Pulse divided into 3 regions:

- 'Main body' region: h big, $x \sim O(1)$.
- 'Front' and 'Back' transition regions: $h \sim O(1)$, x small.

Asymptotic analysis for each region, and match. Very complicated!

Main body region: leading order

h big,
$$x \sim O(1)$$

 $(\mathbf{G} + (\mathbf{h} + \mathbf{h}_{xx})_x) = \frac{\left(\mathbf{c}(h-1) + \mathbf{G}^{\frac{1}{n}}\right)^n}{h^{2n+1}}$

Solution: constant capillary pressure $(p = \frac{1}{2}h_{max})$

$$h = \frac{1}{2}h_{\max}(1 - \cos x)$$
 in $0 \le x \le 2\pi$.

For matching,

$$h\sim rac{1}{4}h_{\max}(x-x_0)^2,$$

with $x_0 = 0$ at the Back and $x_0 = 2\pi$ at the Front.

At leading order main body is at a constant pressure

Transition regions: leading order

 $h \sim O(1)$, x small $(G + (h + h_{xx})_x) = rac{\left(c(h-1) + G^{rac{1}{n}}
ight)^n}{h^{2n+1}}$

Transition regions: $x \sim c^{-n/3}$.

Modified Bretherton equation:

$$h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}}$$
 with $\xi = c^{n/3}(x-x_0).$

($x_0 = 0$ at 'Back' and $x_0 = 2\pi$ at 'Front'.)

Transition regions: leading order

 $h \sim O(1)$, x small $(G + (h + h_{xx})_x) = rac{\left(c(h-1) + G^{rac{1}{n}}
ight)^n}{h^{2n+1}}$

Transition regions: $x \sim c^{-n/3}$.

Modified Bretherton equation:

$$h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}}$$
 with $\xi = c^{n/3}(x-x_0).$

($x_0 = 0$ at 'Back' and $x_0 = 2\pi$ at 'Front'.)

For matching, solutions towards 'Main Body' (h becoming large)

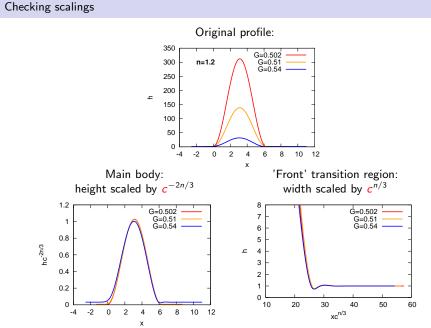
$$h \sim \frac{1}{2} P_{\pm} \xi^2 + Q \xi + R_{\pm}$$
 as $\xi \to \pm \infty$

Use 1 DoF to redefine origin so Q = 0.

Large fast solitary waves Matching: leading order

DoFs at Back: 1-1(Q=0) = 0. P_+ and R_+ uniquely determined. DoFs at Front: 2-1(Q=0) = 1. One parameter in P_- and R_- .

Main body:
$$h \sim \frac{1}{4} h_{\max} (x - x_0)^2$$
 near $x_0 = 0, 2\pi$.


Transition regions: $h \sim \frac{1}{2}P_{\pm}\xi^2 + R_{\pm}$ as $\xi \to \pm \infty$. Matching:

$$P_{-}=P_{+}$$

So now P_{-} unique and hence R_{-} unique.

$$\frac{\frac{1}{2}P(\xi = c^{n/3}(x - x_0))^2 = \frac{1}{4}h_{\max}(x - x_0)^2}{h_{\max} = 2Pc^{2n/3}}$$

Note: capillary pressure in the main body $p = \frac{1}{2}h_{max} = Pc^{2n/3}$.

16

Large fast solitary waves So far have $h_{max}(c)$. G yet to appear

Transition regions: $h \sim \frac{1}{2}P\xi^2 + R_{\pm}$.

• Different apparent film thickness, R_{\pm} , at 'Back' and 'Front'.

Need 1st correction of Main Body: $h \sim c^{2n/3}h_0 + h_2$

$$(\mathbf{G} + (\mathbf{h} + \mathbf{h}_{xx})_{x}) = \frac{\left(c(h-1) + G^{\frac{1}{n}}\right)^{n}}{h^{2n+1}}$$

G₀ + (h₂ + h_{2xx})_x = 0

Large fast solitary waves So far have $h_{max}(c)$. G yet to appear

Transition regions: $h \sim \frac{1}{2}P\xi^2 + R_{\pm}$.

• Different apparent film thickness, R_{\pm} , at 'Back' and 'Front'.

Need 1st correction of Main Body: $h \sim c^{2n/3}h_0 + h_2$

$$(\mathbf{G} + (\mathbf{h} + \mathbf{h}_{xx})_{x}) = rac{\left(c(h-1) + G^{\frac{1}{n}}\right)^{n}}{h^{2n+1}}$$

 $G_{0} + (h_{2} + h_{2xx})_{x} = 0$

Solution (hydrostatic pressure gradient):

$$h_2 = -G_0(x - \sin x) + R_+$$
 in $0 \le x \le 2\pi$.

Matching gives critical G_0 :

$$G_0 = (R_+ - R_-)/2\pi$$

 $2\pi G_0$ pressure difference between pushing and pulling transitions

Large fast solitary waves *c* as a function of *G*

So far have $h_{\max}(c)$ and critical G_0 . Yet to find G(c).

Need 2nd correction:

$$h \sim c^{2n/3}h_0 + h_2 + c^{-(2n-1)n/3}h_3$$
$$G = G_0 + c^{-(2n-1)n/3}G_1$$
$$(h_3 + h_{3xx})_x = \left(\frac{1}{P^{n+1}(1 - \cos x)^{n+1}} - G_1\right)$$

Solution

$$P^{n+1}h_3 = \frac{(n+1)\sin x}{n(2n+1)(1-\cos x)^n} - \frac{(n+(n+1)\cos x)\sin x}{(2n+1)(2n-1)(1-\cos x)^n} \\ + \frac{(n-1)(n+(n+1)\cos x)}{(2n+1)(2n-1)} + \int_{\pi}^{x} \frac{1}{(1-\cos t)^{n-1}} dt - G_1x$$

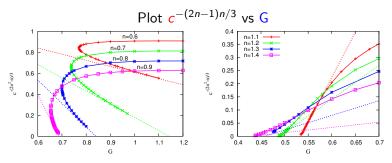
c as a function of G

Near $x = x_0$

$$h_3 \sim S(x-x_0)^{1-2n} + D_{\pm} - G_1 x + \dots$$

- The singular term matches the same in transition regions.
- D_{\pm} different at the 'Back' and 'Front'.
- No terms to match with them from transition regions.
- Hence need:

$$G_1 = (D_+ - D_-)/2\pi$$


Finally we have found the relationship between c and G

$$G = G_0 + c^{-(2n-1)n/3}G_1$$

 $2\pi\,G_1$ is the extra pressure difference to drive flow through main body compared with n=1

Large fast solitary waves $_{\mbox{Results}}$

$$G = G_0 + c^{-(2n-1)n/3}G_1$$

- When n < 1, $G_1 < 0$. Negative slope at G_0 .
- When n > 1, $G_1 > 0$. Positive slope at G_0 .
- When n = 1, $G_1 = 0$. No relationship between G and c yet.

More terms

transition regions

With scaling $\xi = c^{n/3}(x - x_0)$, $h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}} - c^{-2n/3}h_{\xi} - c^{-n}G + c^{-1}\frac{n(h-1)^{n-1}G^{1/n}}{h^{2n+1}} + \dots$

Expand h as

$$h \sim h_0 + c^{-2n/3}h_2 + c^{-n}h_3 + c^{-1}h_4 + c^{-4n/3}h_5 + \dots$$

$$\begin{split} h_0^{\prime\prime\prime} &= \frac{(h-1)^n}{h^{2n+1}}, & h_0 \sim \frac{P}{2}\xi^2 + \mathbf{R}_{\pm} + Sx^{1-2n} \\ h_2^{\prime\prime\prime\prime} &= \frac{(h_0-1)^{n-1}\left(-(n+1)h_0 + (2n+1)\right)}{h_0^{2n+2}}h_2 - \mathbf{h}_0^{\prime}, & h_2 \sim -\frac{P}{4!}\xi^4 + \frac{a_{2\pm}}{2}\xi^2 + \mathbf{c}_{2\pm} + k_2\xi^{3-2n} \\ h_3^{\prime\prime\prime\prime} &= \frac{(h_0-1)^{n-1}(-(n+1)h_0 + (2n+1))}{h_0^{2n+2}}h_3 - \mathbf{G}_0, & h_3 \sim -\frac{G_0}{3!}\xi^3 + \frac{a_{3\pm}}{2}\xi^2 + \mathbf{c}_{3\pm} \\ h_4^{\prime\prime\prime\prime} &= \frac{(h_0-1)^{n-1}(-(n+1)h_0 + (2n+1))}{h_0^{2n+2}}h_4 & h_4 \sim \frac{1}{2}a_{4\pm}\xi^2 + c_{4\pm} \\ &+ \frac{n(h_0-1)^{n-1}G_0^{1/n}}{h_0^{2n+1}}, \end{split}$$

More terms

main body

With $h = c^{2n/3}H$, $(H + H_{xx})_x = -c^{-2n/3}G + c^{-(2n+1)n/3}\frac{(1 - \frac{c^{-2n/3}}{H} + \frac{G^{1/n}(c^{-1-2n/3})}{H})^n}{H^{n+1}}$. Expand H as $H \sim H_0 + c^{-2n/3}H_2 + c^{-(2n+1)n/3}H_3 + c^{-n}H_4 + c^{-1}H_5 + c^{-4n/3}H_6 + \dots$ and G as

$$G \sim G_0 + G_1 c^{-(2n-1)n/3} + G_2 c^{-2n/3} + \dots$$

$$\begin{split} & H_0' + H_0''' = 0, \\ & H_2' + H_2''' = -G_0 \\ & H_3' + H_3''' = -G_1 + \frac{1}{P^{n+1}(1 - \cos x)^{n+1}}, \\ & H_4' + H_4''' = 0, \\ & H_5' + H_5''' = 0, \\ & H_6' + H_6''' = -G_2, \end{split}$$

$$H_0 = P(1 - \cos x)$$

$$H_2 = G_0 (\sin x - x) + A_2 + C_2 \cos x$$

$$H_3 \sim Sx^{1-2n} + D_{\pm} - G_1 x + k_2 x^{3-2n}$$

$$H_4 = A_4 + B_4 \sin x + C_4 \cos x$$

$$H_5 = A_5 + B_5 \sin x + C_5 \cos x$$

$$H_6 = G_2 (\sin x - x) + A_6 + B_6 \sin x + C_6 \cos x$$

More terms Matching: transition regions

Transition regions=

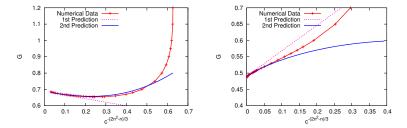
More terms Matching: main body region

Main body=

$$c^{\frac{2n}{3}} \quad \left[\frac{P}{2}x^2 - \frac{P}{4!}x^4 + \frac{P}{6!}x^6 + \dots\right] \\ + c^0 \quad \left[-G_0x_0 + A_2 + C_2 - \frac{C_2}{2}x^2 - \frac{G_0}{3!}x^3 + \frac{C_2}{4!}x^4 + \dots\right] \\ + c^{-\frac{2n^2}{3} + \frac{n}{3}} \quad \left[Sx^{1-2n} - G_1x_0 + D_{\pm} + k_2x^{3-2n} + k_3x^{5-2n} + \dots\right] \\ + c^{-\frac{n}{3}} \quad \left[A_4 + C_4 - \frac{C_4}{2}x^2 + \dots\right] \\ + c^{\frac{2n}{3} - 1} \quad \left[A_5 + C_5 - \frac{C_5}{2}x^2\right] \\ + c^{-\frac{2n}{3}} \quad \left[-G_2x_0 + A_6 + C_6 - \frac{C_6}{2}x^2 - \frac{G_2 + B_6}{3!}x^3 + \dots\right]$$

More terms: matching two regions

At c^{0} : $G_{0} = (R_{+} - R_{-})/2\pi$ At $c^{-(2n^{2}-n)/3}$: $G_{1} = -(D_{+} - D_{-})/2\pi$ At c^{-1} : $G_{2} = (c_{2+} - c_{2-})/2\pi$ Hence, $G = G_{0} + G_{1}c^{-(2n-1)n/3} + G_{2}c^{-2n/3}$


More terms: Results

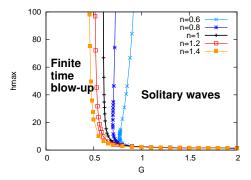
$$G = G_0 + G_1 c^{-(2n-1)n/3} + G_2 c^{-2n/3}$$

Plot G vs
$$c^{-(2n-1)n/3}$$

n = 0.9

More terms: Results

$$G = G_0 + G_1 c^{-(2n^2 - n)/3} + G_2 c^{-2n/3}$$


When n = 1, $G_1 = 0$, so

$$\mathbf{G} = \mathbf{G}_0 + \mathbf{G}_2 \mathbf{c}^{-2/3}$$

Need even more terms for Newtonian n = 1 – see beyond end.

 $2\pi {\it G}_2$ comes from corrections in the transition regions due to the small axial curvature

Two branches for n < 1

Upper branch is unstable – solutions either blow up or decay to lower branch.

Hence there is a maximum size of stable solitary for shear-thinning fluids.

- Normal stress effect.
- Relax the thin film approximation? $\sqrt{}$

A third mechanism to determine G(c)

- Newtonian fluid $n=1~\sqrt{}$
- What happens at big G? $\sqrt{}$
- Finite flow domain for shear-thinning fluids $\sqrt{}$
- Comparison with experimental data.

Symmetry breaking instability with elastic liquids with Claire McIlroy

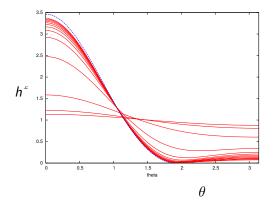
- François Boulogne observed in his Paris PhD thesis that the coating of an elastic liquid was never axisymmetric, but was always thicker on one side.
- Flow in thin coating is mainly simple shear and quasi-steady (varies over distances much greater than thickness).
- Hence rheology is a viscosity plus normal stresses.
- ► First normal stress difference = tension in streamlines → enhanced effective surface tension.
- ► Second normal stress difference = tension in vortex lines → new instability.

Symmetry breaking instability with elastic liquids Governing equation

Extra non-Newtonian stress for a second-order fluid

$$\sigma^{NN} = -2\alpha \overset{\nabla}{E} + \beta E^2,$$

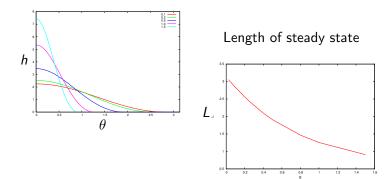
 α tension in the streamlines, $\beta < {\rm 0}$ tension in the vortex lines.


$$\frac{\partial h}{\partial t} + \frac{\partial h}{\partial z} - \nabla h^3 \nabla \nabla^2 h - A \frac{\partial^2}{\partial z^2} h^5 - B \frac{\partial^2}{\partial \theta^2} h^5 = 0,$$
(curiously $A \sim \alpha/6$, but $B \sim -\beta/80$)

Now study development of lop-sided flow with $h(\theta, t)$, no *z*-variations.

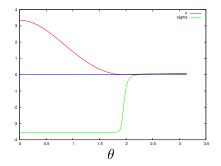
$$h_t - \left(h^3(h_{\theta\theta} + h + Bh^2)_{\theta}\right)_{\theta} = 0$$

Symmetry breaking instability with elastic liquids $_{\mbox{Time evolution}}$


$$h(\theta, t)$$
 at $t = 2^n$ $n = -2, ..., 11$, for $B = 0.5$.

Dotted blue is a steady state which wets only $0 \le \theta \le 1.9071$ (Interesting intermediate times: drift of an off-centred cylinder.)

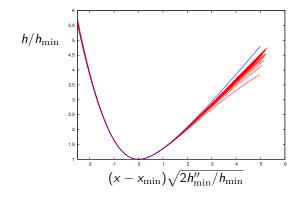
Symmetry breaking instability with elastic liquids Steady states


Steady states for various B

B

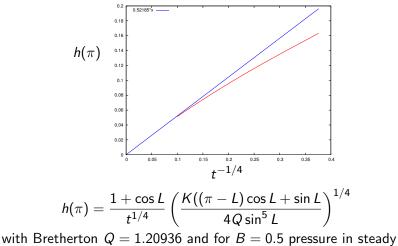
Symmetry breaking instability with elastic liquids Structure of steady states

The shape and the pressure (stress $\sigma_{\theta\theta}$) at $t = 10^3$ for B = 0.5


There two constant pressure regions.

The higher pressure region to the right is draining into the lower pressure region to the left through a small neck.

Symmetry breaking instability with elastic liquids


The neck between the two constant pressure regions

Universal shape of the neck between the two constant pressure regions, for $t = 50 (50) 10^3$ and for B = 0.5.

Blue shape from Bretherton's equation.

Symmetry breaking instability with elastic liquids Draining of small region

state lobe K = 3.7297 and length of steady state lobe L = 1.9171.

- Normal stress effect. $\sqrt{}$
- Relax the thin film approximation? $\sqrt{}$

A third mechanism to determine G(c)

- Newtonian fluid $n = 1 \sqrt{}$
- What happens at big G? $\sqrt{}$
- Finite flow domain for shear-thinning fluids $\sqrt{}$
- Comparison with experimental data.

n = 1 Newtonian fluid, even more terms

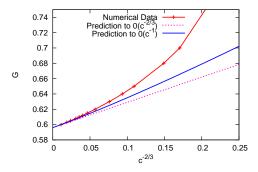
Matching: transition regions

Transition regions=

	h_0	<i>h</i> ₂	<i>h</i> ₃	h_4	
c ^{2/3} [$\frac{P}{2}x^2$	$-\frac{P}{4!}x^4$		$+\frac{P}{6!}x^{6}$	+]
$+c^{0}[$	R_{\pm}	$+\frac{a_2}{2}x^2$	$-\frac{G_0}{3!}x^3$	$-\frac{a_2}{4!}x^4$	$+\dots]$
$+c^{-1/3}[$	$-\frac{2}{3P^2x}$		$+\frac{a_3}{2}x^2$	$+\frac{11}{1080P^2}x^3$	$+\dots]$
$+c^{-2/3}[$		$+c_{2\pm}$		$+\frac{a_4}{2}x^2$	$+\ldots]$
$+c^{-1}\log c ig[$			$+\frac{4G_0}{9P^3}$		$+\dots]$
$+c^{-1}[$	$\frac{2(1+2R_{\pm})}{15P^3x^3}$	$+rac{8R_{\pm}+4+20a_{2}}{15P^{3}x}$	$+ \frac{4G_0}{3P^3} \log x + C_{3\pm}$		$+\ldots]$

n = 1 Newtonian fluid, even more terms

Matching: main body region

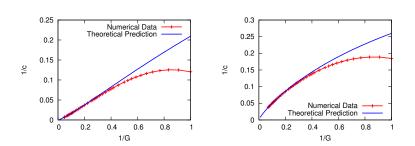

Main body =

$$c^{2/3} \quad \left[\frac{P}{2}x^2 - \frac{P}{4!}x^4 + \frac{P}{6!}x^6 + \dots\right] \\ + c^0 \quad \left[-G_0x_0 + A_2 + C_2 - \frac{C_2}{2}x^2 - \frac{G_0}{3!}x^3 + \frac{C_2}{4!}x^4 + \dots\right] \\ + c^{-1/3} \quad \left[-\frac{2}{3P^2x} + (A_3 + C_3) + (\frac{1}{18P^2} + B_3)x - \frac{C_3}{2}x^2 + (\frac{1}{1080P^2} - \frac{B_3}{3!})x^3 \dots \right] \\ + c^{-2/3} \quad \left[-G_2x_0 + A_4 + C_4 + B_4x - \frac{C_4}{2}x^2 - \frac{G_2}{3!}x^3 + \dots\right] \\ + c^{-1}\log c \quad \left[A_5 + C_5 - \frac{C_5}{2}x^2 + \dots\right] \\ + c^{-1} \quad \left[\frac{2(1+2R_{\pm})}{15P^3x^3} + \frac{4(1+2A_2 - 3C_2)}{15P^3x} + \frac{4G_0}{3P^3}\log x - \frac{G_3x_0}{6} + A_6 + C_6\dots\right]$$

n = 1 Newtonian fluid, even more terms Results

At
$$c^{0}$$
: $G_{0} = (R_{+} - R_{-})/2\pi$
At $c^{-2/3}$: $G_{2} = (c_{2+} - c_{2-})/2\pi$
At c^{-1} : $G_{3} = (c_{3+} - c_{3-})/2\pi$
Hence,

$${\it G}={\it G}_0+{\it G}_2{\it c}^{-2/3}+{\it G}_3{\it c}^{-1}$$


$$h \sim 1 + \frac{1}{G}h_1$$
 $c \sim \left(2 + \frac{1}{n}\right)G^{\frac{1}{n}} + c_1G^{\frac{1}{n}-1}$

where h_1 satisfies the nonlinear equation

$$h_1' + h_1''' = nc_1 h_1 + h_1^2 \left(-n(2n+1) + \frac{n(n-1)}{2} \left(2 + \frac{1}{n} \right)^2 \right)$$

This equation can be solved numerically to give the value of c_1 for different values of n.

n = 0.8

n = 1.2

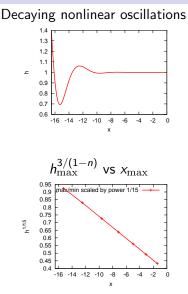
Finite flow domain for shear-thinning fluids

Modified Bretherton equation

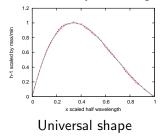
$$h''' = \frac{(h-1)^n}{h^{2n+1}}$$

Integrating from $\pm\infty$ where $h\sim 1+{\tilde h}~({\tilde h}\ll 1)$, ${\tilde h}$ satisfies:

 ${ ilde h}^{\prime\prime\prime\prime}={ ilde h}^n.$ \Leftarrow No exponential solutions for n
eq 1.


Solution at 'Back'

$$\tilde{h} = A(\xi - \xi_0)^{\frac{3}{1-n}}, \quad n < 1$$


 \tilde{h} becomes 0 at a finite distance.

While viscosity thins as $\gamma \to \infty$ it thickens as $\gamma \to 0$, and so flow stops in a finite distance.

Finite flow domain for shear-thinning fluids Solution at 'Front' (n = 0.8)

Each half-cycle normalised by maximum and by wavelength

Decays to zero in finite distance