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Motivation

Manufacture of polymeric and optical fibres.
The coating fluid is often non-Newtonian.

Shear-thinning
Duprat, Ruyer-Quil & Giorgiutti-Dauphiné

Phys. Fluids 2009

Newtonian

Kliakhandler, Davis & Bankoff JFM 2001

2



Governing equations
Constitutive equation

Power-law viscosity: µ = β

∣∣∣∣∂u∂y
∣∣∣∣n−1

σxy = β

∣∣∣∣∂u∂y
∣∣∣∣n sign

(
∂u

∂y

)
Xanthan solutions

Boulogne et al, Private Communication

Geometry

Axisymmetric
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Governing equations
Lubrication framework

Momentum: 0 = −dp

dx
+ ρg +

∂σxy
∂y

Capillary pressure: p = −γ
(

h

a2
+ hxx

)

Volume flux: Q = β−
1
n

n

2n + 1

(
ρg − dp

dx

) 1
n
h(2+

1
n )

Note:(·)
1
n = sign(·)| · |

1
n

Mass conservation: ht + Qx = 0
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Governing equations
Non-dimensionalisation

Lengthscales:

I Fibre radius, a, in x direction.

I Initial film thickness, h0, in y direction.

Time:

I Rayleigh instability, 2n+1
n

(
βan+3

γhn+2
0

) 1
n
.

ht +
(
h2+ 1

n (G + (h + hxx)x)
1
n

)
x

= 0

where Bond number G = ρga3

γh0
.
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Time-dependent numerical simulations
Periodic forcing at inlet: ω = 1

G small (thicker film):
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Time-dependent numerical simulations
Period in x

G small (thicker film):
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I Coalescence cascade.

I Train of regular pulses of
similar amplitude and speed.

I Weakly interacting with each
other, but don’t coalesce.

This talk: Equilibrium pulses? When? Properties?
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Stationary solitary waves
Governing equations

In the frame of the solitary waves traveling with speed c :

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

h→ 1, as x → ±∞

Numerically construct the stationary solitary waves.

I Integrating from x = −∞ and from x = +∞ to x = 0.

I Hence need to find starting conditions at x = ±∞.

8



Stationary solitary waves
Governing equations

In the frame of the solitary waves traveling with speed c :

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

h→ 1, as x → ±∞

Numerically construct the stationary solitary waves.

I Integrating from x = −∞ and from x = +∞ to x = 0.

I Hence need to find starting conditions at x = ±∞.

8



Stationary solitary waves
Governing equations

In the frame of the solitary waves traveling with speed c :

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

h→ 1, as x → ±∞

Numerically construct the stationary solitary waves.

I Integrating from x = −∞ and from x = +∞ to x = 0.

I Hence need to find starting conditions at x = ±∞.

8



Stationary solitary waves
Governing equations

In the frame of the solitary waves traveling with speed c :

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

h→ 1, as x → ±∞

Numerically construct the stationary solitary waves.

I Integrating from x = −∞ and from x = +∞ to x = 0.

I Hence need to find starting conditions at x = ±∞.

8



Stationary solitary waves
Initial conditions

At x = ±∞: h ∼ 1 + h̃ with h̃� 1.

Linearised equation:

h̃′′′ + h̃′ − Ah̃ = 0

where A = nG 1−1/nc − (2n + 1)G > 0.

Three solutions of exponential form:
I h̃1 = a1em1x

m1 real and positive.

Use in ’Back’ (1 DoF).

I h̃2,3 = a2,3em2,3x

m2,3 complex conjugates with
negative real parts.

Use in ‘Front’ (2 DoF).
 0.5

 1
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h
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FrontBack

n=0.8, G=0.9
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Stationary solitary waves
Numerical construction

For fixed G :

1. Shoot from Back, with a2 = a3 = 0. Stop when h′′ = 0, h′ < 0.

2. Shoot from Front, with a1 = 0. Stop when h′′ = 0, h′ < 0, h > 1.5.

3. Vary the phase of a2,3 to match h.

4. Vary speed c to match h′.
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I Monotonic increase of h at
Back.

I Oscillatory decrease of h at

Front.
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Stationary solitary waves
Results: n = 1 Kalliadasis & Chang, J. Fluid Mech. 1994
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I As G decreases, amplitude
increases.

I Width of the ’Main Body’

independent of G .

I No stationary solitary
waves for G < G0.

I As G ↓ G0+, hmax →∞.

Agreement with experiment Quéré, Europhys. Lett. 1990:

I Critical hc to observe disturbance ∝ a3.

I G = ρga3

σh0
⇒ hc ∝ a3 at G = G0.
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I Critical hc to observe disturbance ∝ a3.

I G = ρga3

σh0
⇒ hc ∝ a3 at G = G0.

11



Stationary solitary waves
Results: n = 1 Kalliadasis & Chang, J. Fluid Mech. 1994

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-10 -5  0  5  10  15  20  25

h

x

G=1
G=0.9
G=0.8

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

hm
ax

G

Solitary waves

Finite
time
blow-up

I As G decreases, amplitude
increases.

I Width of the ’Main Body’

independent of G .

I No stationary solitary
waves for G < G0.

I As G ↓ G0+, hmax →∞.

Agreement with experiment Quéré, Europhys. Lett. 1990:
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Stationary solitary waves
Results: various n

c vs G
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I Different behaviours for n < 1 and n > 1.

I Two branches of solutions for n < 1.

What determines critical G0? Relationship of h and c with G?

Look at large fast stationary solitary waves close to G0.

12



Stationary solitary waves
Results: various n

c vs G

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

hm
ax

G

Solitary waves

Finite
time
blow-up

n=0.6
n=0.8

n=1
n=1.2
n=1.4

hmax vs G

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.5  1  1.5  2

c

G

n=0.6
n=0.8

n=1
n=1.2
n=1.4

I Different behaviours for n < 1 and n > 1.

I Two branches of solutions for n < 1.

What determines critical G0? Relationship of h and c with G?

Look at large fast stationary solitary waves close to G0.

12



Stationary solitary waves
Results: various n

c vs G

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

hm
ax

G

Solitary waves

Finite
time
blow-up

n=0.6
n=0.8

n=1
n=1.2
n=1.4

hmax vs G

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.5  1  1.5  2

c

G

n=0.6
n=0.8

n=1
n=1.2
n=1.4

I Different behaviours for n < 1 and n > 1.

I Two branches of solutions for n < 1.

What determines critical G0? Relationship of h and c with G?

Look at large fast stationary solitary waves close to G0.

12



Stationary solitary waves
Results: various n

c vs G

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2

hm
ax

G

Solitary waves

Finite
time
blow-up

n=0.6
n=0.8

n=1
n=1.2
n=1.4

hmax vs G

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.5  1  1.5  2

c

G

n=0.6
n=0.8

n=1
n=1.2
n=1.4

I Different behaviours for n < 1 and n > 1.

I Two branches of solutions for n < 1.

What determines critical G0? Relationship of h and c with G?

Look at large fast stationary solitary waves close to G0.

12



Large fast solitary waves

Pulse divided into 3 regions:

I ’Main body’ region: h big, x ∼ O(1).

I ’Front’ and ’Back’ transition regions: h ∼ O(1), x small.
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Asymptotic analysis for each region, and match.
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Large fast solitary waves
Main body region: leading order

h big, x ∼ O(1)

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

Solution: constant capillary pressure (p = 1
2hmax)

h = 1
2hmax (1− cos x) in 0 ≤ x ≤ 2π.

For matching,

h ∼ 1

4
hmax(x − x0)2,

with x0 = 0 at the Back and x0 = 2π at the Front.
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Large fast solitary waves
Transition regions: leading order

h ∼ O(1), x small

(G + (h + hxx)x) =

(
c(h− 1) + G

1
n

)n

h2n+1

Transition regions: x ∼ c−n/3.

Modified Bretherton equation:

hξξξ =
(h − 1)n

h2n+1
with ξ = cn/3(x − x0).

(x0 = 0 at ’Back’ and x0 = 2π at ’Front’.)

Solutions towards ’Main Body’

h ∼ 1
2P±ξ

2 + Qξ + R± as ξ → ±∞

Use 1 DoF to redefine origin so Q = 0.
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Large fast solitary waves
Matching: leading order

At Back 1− 1(Q = 0) = 0 DoF: P+ and R+ uniquely determined.

At Front 2− 1(Q = 0) = 1 DoF in P− and R−.

Main body: h ∼ 1
4hmax(x − x0)2 near x0 = 0, 2π.

Transition regions: h ∼ 1
2P±ξ

2 + R± as ξ → ±∞.
Matching:

P− = P+

So now P− unique and hence R−.

1
2P(ξ = cn/3(x − x0))2 = 1

4hmax(x − x0)2

hmax = 2Pc2n/3

Note: capillary pressure in the main body p = 1
2hmax = Pc2n/3.
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Large fast solitary waves
Checking scalings

Original profile:
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Large fast solitary waves
Critical G

So far have hmax(c). G yet to appear

Transition regions: h ∼ 1
2Pξ

2 + R±.
I Different apparent film thickness, R±, at ’Back’ and ’Front’.

Need 1st correction of Main Body: h ∼ c2n/3h0 + h2

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h2n+1

G0 + (h2 + h2xx)x = 0

Solution (hydrostatic pressure gradient):

h2 = −G0(x − sin x) + R+ in 0 ≤ x ≤ 2π.

Matching gives critical G0:

G0 = (R+ − R−)/2π
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Finding R± accurately
Modified Bretherton equation

h′′′ =
(h − 1)n

h2n+1

Integrating from ±∞ where h ∼ 1 + h̃ (h̃� 1), h̃ satisfies:

h̃′′′ = h̃n.⇐ No exponential solutions for n 6= 1.

Solution at ’Back’:

Solution at ’Front’ (n = 0.8):

h̃ = A(ξ − ξ0)
3

1−n , n < 1

h̃ becomes 0 at a finite distance.

h̃ = A(ξ0 − ξ)
3

1−n , n > 1

h̃ decays algebraically to 0.

19
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Finding R±
Numerics

h′′′ = (h−1)n

h2n+1

h ∼ 1
2Pξ

2 + R± + S(n)ξ1−2n + T (n)ξ−1−2n + . . .
with S(n) = 2n+1

(1−2n)(−2n)(−1−2n)Pn+1 , T (n) =
2n+2((n+1)R±+n)

Pn+2(−1−2n)(−2−2n)(−3−2n)
.

Least-square-fit[100:150]: P(n)± 0.00001, R±(n)± 0.001.
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Large fast solitary waves
c as a function of G

So far have hmax(c) and critical G0. Yet to find c(G ).

(G + (h + hxx)x) =

(
c(h− 1) + G

1
n

)n

h2n+1

Need 2nd correction: h ∼ c2n/3h0 + h2 + c−(2n−1)n/3h3

(h3 + h3xx)x =

(
1

Pn+1(1− cos x)n+1

− G1

)
Near x = x0

h3 ∼ k1(x − x0)1−2n + D±

− G1x + . . .
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− G1x + . . .

I The singular k1 term matches S(n) in transition regions.

I D± different at the ’Back’ and ’Front’.

I No terms to match with them from transition regions.

I Need an expansion from G :

G = G0 + c(−(2n−1)n/3G1
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(h3 + h3xx)x =

(
1

Pn+1(1− cos x)n+1
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)
Near x = x0

h3 ∼ k1(x − x0)1−2n + D± − G1x + . . .

G1 = (D− − D+)/2π

G = G0 + c−(2n−1)n/3G1

G1 determined numerically by finding the D±.
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Large fast solitary waves
Results

G = G0 + c−(2n−1)n/3G1

n < 1:
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I When n < 1, G1 < 0. Negative slope at G0.

I When n > 1, G1 > 0. Positive slope at G0.

I When n = 1, G1 = 0. No relationship between G and c yet.
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More terms
transition regions

With scaling ξ = cn/3(x − x0),

hξξξ =
(h − 1)n

h2n+1
− c−2n/3hξ − c−nG + c−1 n(h − 1)n−1G 1/n

h2n+1
+ . . .

Expand h as

h ∼ h0 + c−2n/3h2 + c−nh3 + c−1h4 + c−4n/3h5 + . . .

h′′′0 =
(h − 1)n

h2n+1
, h0 ∼

P

2
ξ

2 + R± + k1x
1−2n

h′′′2 =
(h0 − 1)n−1 (−(n + 1)h0 + (2n + 1))

h2n+2
0

h2 − h′0, h2 ∼ −
P

4!
ξ

4 +
a2±

2
ξ

2 + c2± + k2ξ
3−2n

h′′′3 =
(h0 − 1)n−1(−(n + 1)h0 + (2n + 1))

h2n+2
0

h3 − G0, h3 ∼ −
G0

3!
ξ

3 +
a3±

2
ξ

2 + c3±

h′′′4 =
(h0 − 1)n−1(−(n + 1)h0 + (2n + 1))

h2n+2
0

h4 h4∼
1

2
a4±ξ

2 + c4±

+
n(h0 − 1)n−1G

1/n
0

h2n+1
0

,
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More terms
main body

With h = c2n/3H,

(H + Hxx)x = −c−2n/3G + c−(2n+1)n/3 (1− c−2n/3

H
+ G1/n(c−1−2n/3)

H
)n

Hn+1
.

Expand H as

H ∼ H0 + c−2n/3H2 + c−(2n+1)n/3H3 + c−nH4 + c−1H5 + c−4n/3H6 + . . .

and G as
G ∼ G0 + G1c

−(2n−1)n/3 + G2c
−2n/3 + . . .

H′0 + H′′′0 = 0, H0 = P(1 − cos x)

H′2 + H′′′2 = −G0 H2 = G0 (sin x − x) + A2 + C2 cos x

H′3 + H′′′3 = −G1 +
1

Pn+1(1 − cos x)n+1
, H3 = k1x

1−2n + D± − G1x + k2x
3−2n

H′4 + H′′′4 = 0, H4 = A4 + B4 sin x + C4 cos x

H′5 + H′′′5 = 0, H5 = A5 + B5 sin x + C5 cos x

H′6 + H′′′6 = −G2, H6 = G2(sin x − x) + A6 + B6 sin x + C6 cos x
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More terms
Matching: transition regions

Transition regions=

h0 h2 h3 h4 h5

c
2n
3

[
P
2 x

2 − P
4!x

4 + P
6!x

6 + . . .
]

+c0
[

R± + a2

2 x
2 −G0

3! x
3 − a2

4! x
4 + . . .

]
+c−

2n2

3 + n
3

[
k1x

1−2n +k2x
3−2n +k3x

5−2n + . . .
]

+c−
n
3

[
+ a3

2 x
2 + . . .

]
+c

2n
3 −1

[
a4

2 x
2 + . . .

]
+c−

2n
3

[
c2± + a5

2 x
2 + . . .

]
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More terms
Matching: main body region

Main body=

c
2n
3

[
P
2 x

2 − P
4!x

4 + P
6!x

6 + . . .
]

+c0
[
−G0x0 + A2 + C2 − C2

2 x2 − G0

3! x
3 + C2

4! x
4 + . . .

]
+c−

2n2

3 + n
3

[
k1x

1−2n−G1x0 + D± + k2x
3−2n + k3x

5−2n + . . .
]

+c−
n
3

[
A4 + C4 − C4

2 x2 + . . .
]

+c
2n
3 −1

[
A5 + C5 − C5

2 x2
]

+c−
2n
3

[
−G2x0 + A6 + C6 − C6

2 x2 − G2+B6

3! x3 + . . .
]
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More terms: Results

At c0:
G0 = (R+ − R−)/2π

At c−(2n2−n)/3:
G1 = −(D+ − D−)/2π

At c−1:
G2 = (c2+ − c2−)/2π

Hence,

G = G0 + G1c
−(2n−1)n/3 + G2c

−2n/3
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More terms: Results

G = G0 + G1c
−(2n−1)n/3 + G2c

−2n/3

n = 0.9 G vs c−(2n−1)n/3
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n = 1.2 G vs c−(2n−1)n/3
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More terms: Results

G = G0 + G1c
−(2n2−n)/3 + G2c

−2n/3

When n = 1, G1 = 0, so

G = G0 + G2c
−2/3

Need even more terms!

29



n = 1 Newtonian fluid, even more terms
Matching: transition regions

Transition regions=

h0 h2 h3 h4

c2/3
[

P
2 x

2 − P
4!x

4 + P
6!x

6 + . . .
]

+c0
[

R± + a2

2 x
2 −G0

3! x
3 − a2

4! x
4 + . . .

]
+c−1/3

[
− 2

3P2x + a3

2 x
2 + 11

1080P2 x
3 + . . .

]
+c−2/3

[
+c2± + a4

2 x
2 + . . .

]
+c−1 log c

[
+ 4G0

9P3 + . . .
]

+c−1
[ 2(1+2R±)

15P3x3 + 8R±+4+20a2

15P3x + 4G0

3P3 log x + c3± + . . .
]
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n = 1 Newtonian fluid, even more terms
Matching: main body region

Main body =

c2/3
[
P
2 x

2 − P
4!x

4 + P
6!x

6 + . . .
]

+c0
[
−G0x0 + A2 + C2 − C2

2 x2 − G0

3! x
3 + C2

4! x
4 + . . .

]
+c−1/3

[
− 2

3P2x + (A3 + C3) + ( 1
18P2 + B3)x − C3

2 x2 + ( 1
1080P2 − B3

3! )x3 . . .
]

+c−2/3
[
−G2x0 + A4 + C4 + B4x − C4

2 x2 − G2

3! x
3 + . . .

]
+c−1 log c

[
A5 + C5 − C5

2 x2 + . . .
]

+c−1
[ 2(1+2R±)

15P3x3 + 4(1+2A2−3C2)
15P3x + 4G0

3P3 log x−G3x0 + A6 + C6 . . .
]
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n = 1 Newtonian fluid, even more terms
Results

At c0: G0 = (R+ − R−)/2π
At c−2/3: G2 = (c2+ − c2−)/2π
At c−1: G3 = (c3+ − c3−)/2π
Hence,

G = G0 + G2c
−2/3 + G3c
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Prediction to 0(c-2/3)

Prediction to 0(c-1)
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Future Work

I What happens at big G?
√

I Comparison with experimental data.

I Stability of the two branches for n < 1.

I Relax the thin film approximation?

I Normal stress effect.
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The end

Thank you for your attention!
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Big G

(G + (h + hxx)x) =

(
c(h − 1) + G

1
n

)n

h1+2n

h ∼ 1 +
h1

G

⇒ G +
h1x

G
+

h1xxx

G
= G

(
1 + nG−1− 1

n ch1

)(
1− (1 + 2n)

h1

G

)
⇒ c ∼

(
2 +

1

n

)
G

1
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Not working yet for n < 1! 36



Big G

Expanding c to the next order suggests:

c ∼
(

2 +
1

n

)
G

1
n + c1G

1
n
−1

 1.5

 2
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 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6

(c
-(

2+
1/

n)
G

1/
n )/

G
1/

n-
1

1/G

n=0.6
n=0.8
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