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Motivation

Manufacture of polymeric and optical fibres.
The coating fluid is often non-Newtonian.

m]nupm

Shear-thinning

Duprat, Ruyer-Quil & Giorgiutti-Dauphiné Newtonian

Phys. Fluids 2009 Kliakhandler, Davis & Bankoff JFM 2001
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Governing equations
Constitutive equation
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Governing equations

Lubrication framework

Momentum:

Capillary pressure:

Volume flux:

1

Note:(-)7 = sign(-)| - |»

Mass conservation:

ht+QX:0
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Non-dimensionalisation

Lengthscales:
» Fibre radius, a, in x direction.

» Initial film thickness, hg, in y direction.
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Governing equations

Non-dimensionalisation

Lengthscales:
» Fibre radius, a, in x direction.
» Initial film thickness, hg, in y direction.

Time:

1
> Rayleigh instability, 27+1 (53"*3) 3

n ,th+2

he + (h2+%(G +(h+ hXX)X)%) =0

X

_ pgd

where Bond number G .
vho



Time-dependent numerical simulations

Periodic forcing at inlet: w =1

G small (thicker film):
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Time-dependent numerical simulations

Period in x
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Time-dependent numerical simulations

Period in x
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> Train of regular pulses of
> Ever growing large pulses. similar amplitude and speed.

» Coalescence cascade. > Weakly interacting with each
other, but don't coalesce.

This talk: Equilibrium pulses? When? Properties?
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Stationary solitary waves

Governing equations

In the frame of the solitary waves traveling with speed c:

(c(h— 1)+ G%>n

(G + (h + hXX)x) = p2n+1

h—1 as x— +oo

Numerically construct the stationary solitary waves.
> Integrating from x = —oo and from x = +o00 to x = 0.

» Hence need to find starting conditions at x = too.
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Stationary solitary waves

Initial conditions

At x = +00:  h~1+h with h< 1.
Linearised equation:

W' +H —Ah=0
where A= nG'1/"c — (2n+1)G > 0.

Three solutions of exponential form:

> 711 = g1eMX 8
my real and positive. 25
Use in 'Back’ (1 DoF). 2t

> 7-,273 = 3273em2,3X 15
mo 3 complex conjugates with 1+
negative real parts. os

Use in ‘Front’ (2 DoF). e
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Stationary solitary waves

Numerical construction

For fixed G:

1. Shoot from Back, with a = a3 = 0. Stop when A"’ =0, h' < 0.

2. Shoot from Front, with a; = 0. Stop when i/ =0, K <0, h > 1.5.
3. Vary the phase of a3 to match h.
4

. Vary speed ¢ to match .

25 n=0.8, G=0.9- o
» Monotonic increase of h at
. T Back.
15 | .
» Oscillatory decrease of h at
L
Front.
05 oy
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Stationary solitary waves
Results: n=1 Kalliadasis & Chang, J. Fluid Mech. 1994
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Stationary solitary waves
Results: n =1 Kalliadasis & Chang, J. Fluid Mech. 1994
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X
» As G decreases, amplitude
increases.

» Width of the 'Main Body'
independent of G.

» No stationary solitary
waves for G < Gp.

> As G | Gos, hmax — 00.

Agreement with experiment Quéré, Europhys. Lett. 1990:
» Critical h. to observe disturbance o a3.

> G = pga = h.xa® at G=G.
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Results: various n
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Stationary solitary waves

Results: various n

hmax

» Different behaviours for n < 1 and n > 1.

» Two branches of solutions for n < 1.

What determines critical Gp? Relationship of h and ¢ with G?

Look at large fast stationary solitary waves close to Gp.

12
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Large fast solitary waves

Pulse divided into 3 regions:
» 'Main body’ region: h big, x ~ O(1).

» 'Front’ and 'Back’ transition regions: h ~ O(1), x small.
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Asymptotic analysis for each region, and match.
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Large fast solitary waves
Main body region: leading order
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Large fast solitary waves
Main body region: leading order

h big, x ~ O(1)

(c(h 1)+ G%)"
(G4 the)) =

Solution: constant capillary pressure (p = %hmax)

h=%hpax (1 —cosx) in 0<x<2m.

For matching,

1
h ~ thax(x - X0)2a

with xg = 0 at the Back and xp = 27 at the Front.
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Large fast solitary waves
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(G + (h+hy),) =

Transition regions: x ~ ¢~"/3.

Modified Bretherton equation:

(h—1)"

h{{é = 7/72”_‘_1 with E = Cn/3(X — Xo).
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Large fast solitary waves

Transition regions: leading order
h~ O(1), x small

(c(h 1)+ G%)"
h2n+1

(G + (h+hy),) =

Transition regions: x ~ ¢~"/3.

Modified Bretherton equation:

(h—1)"
hege = =71

(xo = 0 at 'Back’ and xp = 27 at 'Front'.)
Solutions towards 'Main Body’
~IPLE 4+ Q+ Ry as € — Eoo

Use 1 DoF to redefine origin so Q@ = 0.

with € = c"3(x — xp).

15
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Large fast solitary waves
Matching: leading order

At Back 1 —1(Q = 0) = 0 DoF: P4 and Ry uniquely determined.
At Front 2 —1(Q = 0) =1 DoF in P_ and R_.

Main body: h ~ %hmax(x —x0)? near x =0, 27.

Transition regions: h ~ %Piéz + Ry as & — foo.
Matching:
Pf — P+

So now P_ unique and hence R_.

1P = c"3(x = x0))? = L hmax(x — x0)?

hmax = 2Pc?"/3

Note: capillary pressure in the main body p = %hmax = Pc?/3,

16
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Large fast solitary waves

Checking scalings
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Large fast solitary waves
Critical G

So far have hmax(c). G yet to appear

Transition regions: ~ %P§2 + Ry.
» Different apparent film thickness, Ry, at 'Back’ and 'Front’.

Need 1st correction of Main Body: h ~ c2n/3hy + hy

(cth—1)+ G%)"
(G+ (h+hy),) = h2n+1
Go + (h2 + hQXX)X =0
Solution (hydrostatic pressure gradient):

hy = —Go(x —sinx)+ Ry in 0<x<2n.

Matching gives critical Go:
[Go=(Ry — R_)/2r|

18



Finding R, accurately

Modified Bretherton equation

R —
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h2n+1
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K" = h". < No exponential solutions for n # 1.
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Modified Bretherton equation

1" (h — 1)n
W= p2n+1
Integrating from 0o where h ~ 1+ h (h < 1), h satisfies:

K" = h". < No exponential solutions for n # 1.

Solution at 'Back’: Solution at 'Front’ (n = 0.8):
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Finding R, accurately

Modified Bretherton equation

(h—1)"

"o
h™ = h2n+1

Integrating from 0o where h ~ 1+ h (h < 1), h satisfies:

K" = h". < No exponential solutions for n # 1.
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Finding R, accurately

Modified Bretherton equation

1" (h — 1)n
W= p2n+1
Integrating from 0o where h ~ 1+ h (h < 1), h satisfies:

K" = h". < No exponential solutions for n # 1.

Solution at 'Back’: Solution at 'Front’ (n = 0.8):

h A(g — 50)13”7 n<l1 0.85
h becomes 0 at a finite distance. g

3 0.55

Aléo — €)™, n>1

T T T T T T T T
0.9 Iméax(min scaled by power 1/15 —+—

h

! ! ! ! ! ! ! !
-16 -14 -12 -10 8 6 -4 -2 O

h decays algebraically to 0. x
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Finding Ry

Numerics

" h—1)"
h = (h2n+)1

1 — _1—
N§P§2+R:|:+5(n)€l 2n 4 T(n)¢ 1=2n 4 |
) n+1 2"*2((n+1)Ry +n)
with S(n) = (1—2n)(—2121)(—172n)P"+1' T = Srra T amy( a3 2)
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Finding Ry

Numerics

" h—1)"
h = (h2n+)1

~ %sz + Ry + S(n)Er=2n 4 T(n)e~ 172 .

with S(n) = ¢ 2"

- 2"*2((n+1)Ry +n)
(1—2n)(—2n)(—1—2mP+T" (

e oy Gy

Least-square-fit[100:150]: P(n) 4 0.00001, Ry (n) 4 0.001.

P(n) Go(n) = (Ry — R-)/2m
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Large fast solitary waves

c as a function of G

So far have hmax(c) and critical Gy. Yet to find ¢(G).
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Large fast solitary waves

c as a function of G

(cth-1)+ G%)"
h2n+1
Need 2nd correction:  h ~ c?"/3hg + hy + c=(n=1)n/3p,

1
(hs + h3s)x = <P”+1(1 — cos x)nt1 >
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Large fast solitary waves

c as a function of G

(cth-1)+ G%)"
h2n+1
Need 2nd correction:  h ~ c?"/3hg + hy + c=(n=1)n/3p,
1
h h3xx)x = —
(h3 + h3xx) <Pn+1(]_ — cosx)nt1 Gl>

Near x = xp

(G + (h + hXX)X) =

hs ~ ki(x — x0)t 72" + Dy

> The singular ki term matches S(n) in transition regions.
» D, different at the 'Back’ and 'Front’.

» No terms to match with them from transition regions.
>

Need an expansion from G:

G = Gy + @36
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Large fast solitary waves

c as a function of G

(cth-1)+ G%)"
h2n+1
Need 2nd correction:  h ~ c?"/3hg + hy + c=(n=1)n/3p,

1
(hs + h3o)x = <P”+1(1 — cosx)ml Gl>

Near x = xp

(G + (h + hXX)X) =

h3 ~ kl(X — X0)172n + Dj: — G1X + ...

G = (D_ - Dy)/2r

G — GO + C—(2n—l)n/3Gl

Gy determined numerically by finding the D..
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Large fast solitary waves

Results

G = Gy+ C—(2n—1)n/3G1

1

0.8

0.6

(2n2
3

0.4 -

0.2

0

0.6 0.7 0.8 0.9 1 11 1.2
G

» When n < 1, G; < 0. Negative slope at Gy.
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Large fast solitary waves

Results

o 04

G = Gy+ C—(2n—1)n/3G1

n>1:

1

o

w

G
—
EEEE]
Pwi=

N
—_——
—5—

0.8

0.6

-n’m)3

¢

0.15 |

0.2

0

0.6 0.7 0.8 0.9 1 11 1.2 0.4

» When n < 1, G; < 0. Negative slope at Gy.
» When n > 1, G; > 0. Positive slope at Gy.
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Large fast solitary waves

Results

(2n2
3

1

0.8

0.6

0.2

0

0.4 -

G = Gy+ C—(2n—1)n/3G1

n>1:

o
w
G
—
EEEE]
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N
—_——
—5—

Pwi=

-n’m)3

¢

0.15 |

0.6 0.7 0.8 0.9 1 11 1.2 0.4
G

» When n < 1, G; < 0. Negative slope at Gy.
» When n > 1, G; > 0. Positive slope at Gy.

» When n =1, G; = 0. No relationship between G and c yet.
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More terms
transition regions
With scaling &€ = ¢"*(x — xp),
(h—1)"

—2n/3 —n
hgffzw—c /hg_C G+C

_yin(h—1)""1GYn

h2n+1
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More terms

transition regions

With scaling &€ = ¢"*(x — xp),

(h—].)n —2n/3 —n
hEEEZW—C /hg—C G+c p2n+1

Expand h as
heho+c 2 Bhy 4 ¢ "hy+ ¢ thy 4+ ¢4 3hs £ ...

_yin(h—1)""1GYn
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More terms

transition regions

With scaling &€ = ¢"*(x — xp),
(h—1)" o3 n _yin(h—1)""1GYn
hfg’c&:W—C /hg—C G+c T
Expand h as

heho+c 2 Bhy 4 ¢ "hy+ ¢ thy 4+ ¢4 3hs £ ...

111 (h - l)n P 2 1—2n
= — ~ — k
ho el ho ~ &+ Ra + kix
-1
111 (hg —1)"7" (=(n+1)hy + (2n + 1)) ’ P 4 at 3—2n
hy" = 2 hy — hg, h2~—55 +t= ZPEEP b on + kot
-1
i _ (ho = 1)"""(=(n+1)ho + (2n + 1)) Go 53i
h3 2 h3 —Gg,  h3 N*aé PE ey
(ho —1)""H(—=(n+ 1)ho + (20 + 1)) 1 2
= P ha hare Saa£ €+ cax
n(ho — 1)" 1G5/
2 )
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More terms

main body

With h = c2"/3H,

(H+ HXX)X =

—C

72n/3G + C7(2n+1)n/3 (]‘ B

c—2n/3

Gl/n(c—1-2n/3)

H

H

)"

Hn+1
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More terms

main body

With h = ¢2"/3H,

c—2n/3 Gl/n(c—1-2n/3)

1—
(H+ Hw), = _cTBG 4 C—(2n+1)n/3(

H i )".

Hn+1
Expand H as

Heo Ho4+ 23 Hy 4+ ¢ CrtIn8 e 4 ey 4 e Hs 4+ ¢ P Hg 4 ...

and G as
G~ Go+ Glci(znil)nﬁ + G2C72"/3 + ...
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More terms

main body

With h = c2"/3H,

(H+ HXX)X _ 7C72n/3G + C7(2n+1)n/3

Expand H as

Heo Ho4+ 23 Hy 4+ ¢ CrtIn8 e 4 ey 4 e Hs 4+ ¢ P Hg 4 ...

and G as

’ 111

Hy + Hy
’ 11

Hy + H,

Hj + Hy

Hy + H,"”
Hg + He!
Hg + He

—2n/3 Gl/n(C7172n/3))n
H H
Hn+1 )

(1-

G~ Gy+ Gic G I3 L G234

0, Hy = P(1 — cos x)

-Gy Hy = Gp (sinx — x) + Ay + Gy cos x
1

Pnt+1(1 — cos x)+1 ’

3—2n

—G + Hy = kix* 72" + D4 — Gyx + kox

0, Hy = Ag + By sinx + C4 cos x
0, Hs = As + Bs sin x + Cs cos x
— Gy, Hg = Ga(sinx — x) + Ag + Bg sin x + Cg cos x
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More terms

Matching: transition regions

Transition regions=

ho ho hs ha  h
2 P .4 +§X6
Ry +2x? —%x3 —2x*

[
[
+c—%+§[ kix12n X320 Fhax®2n
[
[
[

Cot +5x°

A

ST T A AT S —



More terms

Matching: main body region

Main body=

52— G+ §

[—Goxo+ A2+ G —

-]

Goxp + As + Co —

[
[Ag+ Co— $x2+ ...
[
-

x6—|—

C2

]

C6

X

]

x2 —

Qx4+ Qxt .

_ G2+Be x3 4 .. ]

-]

7G1Xo + Dy + k2X3_2n + k3X5_2n —+ ...

]
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More terms: Results

At cO:
Go = (Rs — R_)/2n
At c—@rt=n)/3,
G =—(Dy —D_)/2n
At cL:
G2 = (C2+ — CQ_)/27T

Hence,

G = GO + G1C7(2n71)n/3 + G2C72n/3
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More terms: Results

G=Gy+ Glc—(Zn—l)n/3 + Gzc—Qn/3

n=0.9 G vsc (2n—=1)n/3 n=12 G vs c—(2n—1)n/3

12 T T T T 0.7 — : : -
Numerical Data —+— Numerical Data —+— .-
1st Prediction -------- 1st Prediction -------- .
1.1 2nd Prediction B 0.65

2nd Prediction —- 1

1 b 4 06 4
© 09 B © 055 B
08 |- — 0.5 [ —
0.7 - B 0.45 B
0.6 L \\ S L L 0.4 L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 005 01 015 02 025 03 035 04
c@n®nys o(en®nys
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More terms: Results

G = Go+ G 7N 4 Gy=2n/3

When n=1, G; =0, so
G = Gy+ Gyc™2/3

Need even more terms!
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n = 1 Newtonian fluid, even more terms

Matching: transition regions

Transition regions=

ho h2 h3
c2/3 [ §x2 _5)(4
+O Re +2x32 — g
+c 1/3[ 731’_,% +%X2
+c_2/3[ +cot
+ctlog [ +35p%
e[ ARy BRedAN0a 4G 60y 4y,

ha

o)
+ax6
a 4
_TZ[X
11
+ 1og0P2 X

as 2
+35X

3

+ o+ + + 4+ +
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n = 1 Newtonian fluid, even more terms
Matching: main body region

Main body =
D]
Goxo + Az + G — x2 — §x3 + Sx* + .. ]

3p2 A3 + C3) (18].-‘32 + B3)X - %Xz + (108]bP2 - %)

A5+C5 C5 2+ ]

20112Ry) | 4(1124,-3C) | 4G
15P3x3 5P+ 38 logx—Gaxo + Ag + G ... |

[
-
[~
+c23 [Goxo+ At G+ Bax — §x7 — §x3 4]
[
*
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n = 1 Newtonian fluid, even more terms

Results

At % Gy=(R.—R.)/2n
At C_2/3: Gz — (C2+ _ C2,)/27T
At Cilj G3:(C3+_C3_)/27r
Hence,

G = Go+ Goc 23 ¢ Gsc !

T
0.74 | Numencal Da}ta I i

Prediction to O(c™;) ====--
0.72 |- Prediction to 0(c” ) _— ,
0.7
0.68
© 066
0.64
0.62
0.6

0.58 ! ‘ ‘ ‘
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Future Work

» What happens at big G? /

33



Future Work

» What happens at big G? /

» Comparison with experimental data.

33



Future Work

» What happens at big G? /
» Comparison with experimental data.

» Stability of the two branches for n < 1.

33



Future Work
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What happens at big G? /

» Comparison with experimental data.
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v

Relax the thin film approximation?

Stability of the two branches for n < 1.

33



Future Work

v

What happens at big G? /

» Comparison with experimental data.

v

v

Relax the thin film approximation?

v

Normal stress effect.

Stability of the two branches for n < 1.
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The end

Thank you for your attention!
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Big G

(cth—1)+ G%)"

(G+(h+hXX)X): h1+2”

h

h~l+4 =
hlx hlxxx

G
hx _ ~1-1 _ m
= G+ 4+ _G(1+nG chl) <1 (1+2n)G>

1 1
:>c~(2+> Ghn
n

c-(2+1n)GH"
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0 0.1 0.2 0.3 0.4 05 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
1G 1/G

Not working yet for n < 1! 36



Big G

Expanding c to the next order suggests:

1
~ <2 + ) Gr+cGnl
n

4 T T
n=0.6 ——
n=0.8
35 B
b
£
3
Q
e 8 )
3
14
<
S 25 1
Y
)
&
2 - -
15 Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6

1/G
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