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Commissioned by editors of JNNFM for an Oldroyd Centennial issue,

– the origins and later development of Oldroyd-A and -B constitutive equations,

– quite an historical mystery tour! extended by this Sneddon invite!

In collaboration with Oliver Harlen.
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Oldroyd B, and not A?

Origin of Oldroyd A/B: the 1950 paper.
But what came before, and what triggered it?

Why is Oldroyd-B used so frequently used, and Oldroyd-A so rarely?
B – referred to in title/abstract of 100 papers per year in last 10 years
A – 6 references in 70 years

What is the underlying difference between A and B?

How to choose?
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James Gardner Oldroyd
some biographical details

I 1921 Born Bradford, Bradford Grammar School

I 1939 Undergraduate at Trinity College, Cambridge

I 1942 Rocket research, Ministry of Supply, Aberporth

I 1945 Courtaulds Fundamental Laboratory, Maidenhead

I 1947 Prize Fellow of Trinity

I 1949 Ph.D.

I 1950 paper

I 1953 Swansea University, later Chair Applied Maths

I 1958 Sc.D.

I 1964 Adams Prize

I 1965 Liverpool University

I 1980 Gold Medal of BSR

I 1982 Died
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James Gardner Oldroyd at Trinity
from members’ record . . .
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James Gardner Oldroyd at Trinity
final year exam results
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Wranglers of 1941

Amarasekara, R.A. – Prof Colombo, Sri Lanka
Boardman, F.D. – creep in nuclear reactors, Donreay
Collings, S.N. – Open University?
Denison, S.J.M. – digital computing, DEUCE
Goldie, A.W. – Prof Leeds, ring theory
Hill, R. – plasticity
Oldroyd, J.G. – rheology
Pulvermacher, M.E. – RAF technical branch, wing commander
Ruston, A.F. – Prof? Cambridge, Banach spaces
Sneddon, I.N. – Prof Keele and Glasgow, transforms, elasticity
Trier, P.E. – director Mullard Research Laboratory
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Jim Oldroyd and Ian Sneddon

Jim Oldroyd, born 1921 Bradford Ian Sneddon, born 1919 Renfrew

Trinity College, Cambridge. J.E.Littlewood, W.R.Dean & A.H.Wilson
1941 First class, Part II Mathematical Tripos

1942 War service, Ministry of Supply
Aberporth, Rockets Cambridge with Dean, armour pentration

Fort Halstead with Mott, cracks
penny shape crack, R.A.Sack

1945 Courtaulds with Wilson 1945 Bristol with Mott & Fröhlich
1947 key paper based Fröhlich & Sack (1946)
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James Gardner Oldroyd at Trinity
. . . from members’ record

In Trinity October 1939/42,

Research Scholar 1945/46.

Elected Fellow October 1947,

also elected that year

George Batchelor, Fritz Ursell,

Thomas Gold.
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Trinity Fellowship thesis 1947 – Contents

After two years of research,
three years before 1950 paper

Part I: 6 papers on flow of “Bingham solids”,
published in Proc. Camb. Phil. Soc. in 1947 and
1948.

Part II lead to the ground-breaking 1950 paper.

9



Trinity Fellowship thesis 1947 – Preface

Thanks Cambridge teachers:

W.R. Dean of Dean flows in curved pipes,

A.H. Wilson, who had become Research Director
of Courtaulds in 1945.
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The 1950 paper

Motivated by the Jefferys model of Fröhlich & Sack (1946),

σij + τ1σ̇ij = 2µ∗(Eij + τ2Ėij).

But Oldroyd remarked: need to differentiate the full tensor σ not just the values of the
components σij :

σ̇ = σ̇ije
iej + σij ė

iej + σije
i ėj ,

i.e. also differentiate basis vectors ei , and moving with the material .
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But Oldroyd remarked: need to differentiate the full tensor σ not just the values of the
components σij :

σ̇ = σ̇ije
iej + σij ė
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Differentiate moving with the Material
– co-translating, co-rotating, and. . .

Three modes of movement.

1. Advected (Lagrangian)
D

Dt
=

∂

∂t
+ u ·∇.

2. Rotating (Zaremba 1903, Jaumann 1911)

◦
A =

DA

Dt
− A · Ω + Ω · A,

where Ω is the vorticity tensor

Ω = 1
2

(
∇u−∇uT

)
.
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Differentiate moving with the Material
– co-translating, co-rotating, and co-deforming

3. Deforming (Hencky 1925 no details) – really?, why? Oldroyd gave no reason.

Complicated. Two varieties, when coordinates deform to be non-orthogonal (skew):
I co-variant components Aij ,

– use the lower-convected time-derivative,

4
A =

DA

Dt
+ A · (∇u)T + ∇u · A.

I contra-variant components Aij ,
– use the upper-convected time-derivative,

5
A =

DA

Dt
− A ·∇u− (∇u)T · A.

1947 thesis: “need to establish the co-variant or contra-variant nature of any physical
quantity before differentiating it”. But Oldroyd failed to do so, ever .
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Oldroyd A & B arrive

In 1947 Oldroyd gave the first proper invariant generalisation of the Jefferys model of
Fröhlich & Sack (1946),

σij + τ1σ̇ij = 2µ∗(Eij + τ2Ėij),

Oldroyd A: σ + τ1
4
σ = 2µ∗(E + τ2

4
E),

Oldroyd B: σ + τ1
5
σ = 2µ∗(E + τ2

5
E).

To choose, need to examine structural models or experiments.

Oldroyd-B gives rod climbing (Weissenberg 1947),
Oldroyd-A anti-climbing.

Hence Oldroyd-B wins in 1950 paper, but underlying reason unclear.
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Technical aside: non-orthogonal (skew) coordinates 1

Measure contra-variant components, x i , of vector x parallel to basis vectors ei .

1

2

x

0
x1

x2

e1

e2

Used for divergence of fluxes
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Technical aside :non-orthogonal coordinates 2

Measure co-variant components, xi , of vector x perpendicular to basis vectors ei, i.e.
parallel to reciprocal basis vectors ei = ej × ek.

1

2

x

0
x1

x2

x2
x1

e1

e2

e2

e1

Used for gradients and surface areas.

Reciprocal of the reciprocal is the original basis, if e1 × e2 · e3 = 1
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Technical aside: non-orthogonal coordinates 3

Time-derivatives of basis vectors,

dei
dt

= ei · ∇u,

gives upper-convected time-derivative for contra-variant components.

While time-derivatives of the reciprocal basis vectors, ei = ej × ek,

dei

dt
= ei · (∇u)T , student exercise!,

gives lower-convected time-derivative for co-variant components.

Mis-education: a vector IS NOT (x , y , z), nor xi , but is x = x iei .
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Technical aside: non-orthogonal coordinates 4

BUT, physics is neither purely co-variant nor purely contra-variant,

so a fuss over nothing, as we shall see.
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Related papers 1

1953 paper: an emulsion, a dilute suspension of liquid drops,
Fröhlich & Sack (1946) was elastic particles.

σij + τ1σ̇ij = 2µ∗(Eij + τ2Ėij),

τ1 =
aµ

γ
A (3 + 2λ+ 8Aφ) , τ2 =

aµ

γ
A (3 + 2λ− 12Aφ) ,

µ∗ = µ

(
1 +

2 + 5λ

2(1 + λ)
φ

)
, where A =

16 + 19λ

40(1 + λ)
.

Same Jefferys model, different coefficients.
No nonlinear terms/physics to select A or B. 19



Related papers 2

1951 paper: 5-constant model,

σ + τ1
4
σ − 2κ1(E · σ + σ · E) = 2µ0(E + τ2

4
E)− 8µ0κ2E · E.

Normal stress differences - tension in streamlines and in vortex lines.
Shear-thinning, but shear viscosity constant for Oldroyd-A & Oldroyd-B.

No physics given to justify the added terms.

20



Related papers 3

1958 paper: 8-constant model

σ + τ1
◦
σ − τ3(E · σ + σ · E) + τ5(σ : I)E + τ6(σ : E)I

= 2µ0
(

E + τ2
◦
E− 2τ4E · E + τ7(E : E)I

)
.

Added all possible terms either bilinear in stress and strain-rate, or quadratic in
strain-rate.
These nonlinear terms are insufficient to describe observed extensional behaviour.

No physics given to justify the added terms.
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Related papers 4

1965 paper: using symmetries, calculates kinematics of the flow, in order to
demonstrate that one can work in coordinates deforming with the flow.

But has no constitutive equation.
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Related papers 5

1984 paper: two chapters selected by Ken Walters from Oldroyd’s 1964 Adams Prize
essay.

A careful and extended account of 1950 paper.

But still no physics to select between Oldroyd-A and Oldroyd-B, and no awareness of
the extensional viscosity crisis.
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Microstructure

Time for some physics, suggested as necessary by Oldroyd, but never supplied by him.
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Microstructure 1 – rotation

Jeffery (1922) found that rigid ellipsoids rotated with all of the vorticity ,

but only a fraction of strain-rate, a fraction r2−1
r2+1

.

Hence non-affine slip, introduced by Johnson & Segalman (1977), but earlier by

Gordon & Schowlater (1972). Both gave no argument for why.

�
A =

◦
A− r2−1

r2+1
(E · A + A · E) ≡ r2

r2+1

5
A + 1

r2+1

4
A.

NB fibres r � 1 upper-convective, discs r � 1 lower-convective.

Non-affine slip gives shear-thinning, Burgers (1938), Peterlin (1938),

and a second normal stress difference.

Note 1922 and 1938 papers all before the 1950 paper.
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Microstructure 2 – deformation

I Suspension of elastic spheres

I Linear by Fröhlich & Sack (1946),
I Nonlinear by Cerf (1951), Roscoe (1967),
I finding shear-thinning, both normal stresses, critical extension rate beyond which no

steady state.

I Suspension of liquid drops

I Linear Oldroyd (1953),
I Nonlinear by Barthès-Biesel & Acrivos (1973), Rallison (1984).

I Both suspensions have rotation with full vorticity and deformation with only a

fraction of strain-rate (non-affine slip).
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Microstructure 3 - wrong view

Wrong: Jefferys equation of Fröhlich & Sack (1946),:

σ + τ1σ̇ = 2µ∗(E + τ2Ė ),

Correction 1. Expose microstructural state – deformation of spheres D, which satisfies
an evolution equation

D + τ Ḋ = 5
3τE. (∗)

The stress is related to deformation

σ = 2µ(1− 5
3φ)E + 10

3 φG D.

But Oldroyd said stress comes from deforming with the material, i.e. not created by a
source term as in the RHS of (*).
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Microstructure 3 - corrected view

Correction 2. Included the undeformed state I, by defining

A = I + D.

Then can generate stress by deforming A with the material, with no source term

(A− I) + τ
( ◦

A− 5
6 (E · A + A · E)

)
= 0,

i.e. non-affine slip of 5/6.

This is all in Fröhlich & Sack (1946) if one were to dig into the physics.

Similarly dilute emulsion: Oldroyd’s 1953 paper has all the info for non-affine slip of
5/(2(2λ+ 3)).

Conclude: physics selects something between A & B
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Popularity of Oldroyd-B

Enduring use of Oldroyd-B:

I Only 3 parameters to fit data,

I Fair fit to Boger fluids,

I Hence sensible choice for numerical simulations,

I Elastic-dumbbell model is governed by Oldroyd-B.

Oldroyd-B constant shear viscosity, first NSD, zero second NSD (approx Boger).

Problem: infinite extensional viscosity at finite strain-rate. Oldroyd unaware? (in print)

Look at micro model to cure.
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Elastic-dumbbell model 1
Kuhn & Kuhn 1945, Werner & student Hans, no relation

κ

a

Ε

r

Hydrodynamic drag on beads
6πµa(r · ∇u− ṙ),

with a = r0 = b(N/6)1/2.

Spring force −κr between beads,
with κ = 3kT/Nb2.

ṙ = r ·∇u− κ

3πµa
r.

Add Brownian motion of beads:

D

Dt
〈rr〉 = 〈rr〉 ·∇u + ∇uT · 〈rr〉 − 1

τ

(
〈rr〉 − r20

3
I

)
,

with relaxation time τ = 3πµa/2κ.
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Elastic-dumbbell model 2

D

Dt
〈rr〉 = 〈rr〉 ·∇u + ∇uT · 〈rr〉 − 1

τ

(
〈rr〉 − r20

3
I

)
,

Note upper-convected time-derivative

And bulk stress, with number density of polymers n,

σ = −pI + µ(∇u + ∇uT ) + nκ〈rr〉.

This pair of equations govern an Oldroyd-B fluid.
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Elastic-dumbbell model 3

Why Oldroyd-B?

Follows from
ṙ = r ·∇u− κ

3πµa
r,

which has r deforming like a fibre, a material line-element.

Why?

Because drag force on a bead depends only on velocity at its centre, a single point.

But distributed hydrodynamics gives reduce efficiency of strain-rate,
so non-affine slip (ejh 1974).
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Refinements

1. Linear chain of beads-and-springs: Rouse 1953, and hydrodynamic interactions
Zimm 1956. Gives spectrum. But in strong flows only lowest modes active.

2. In extensional flow, the viscosity blows up at a finite strain-rate E = 1/2τ .
Corrected with Finite-Extensible-Nonlinear-Elastic (FENE) spring force

− κr

1− r2/N2b2
.

Harold R. Warner (1972), Bob Bird’s student.
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Refinements

2b. Using Peterlin’s the pre-averaging gives FENE-P

σ = −pI + µ(∇u + ∇uT ) + G f A,

5
A= −1

τ
(f A− I) , with f =

1

1− Tr(A)/L2
,

where A = 3〈rr〉/r20 and L =
√

3Nb/r0.

2c. Chilcott and Rallison (1988) suggested FENE-CR, with a constant shear viscosity,

5
A= − f

τ
(A− I) .

3a. Also bead friction increased with deformation τ to τ
√

Tr(A),
De Gennes 1974, ejh 1974.

3b. Extra dissipation term for uncoiling internal modes, ejh 1994.
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Refinements

4. PTT Phan Thien and Tanner (1977), includes non-affine slip
�
A

�
A= −1 + αTr(A)

τ
(A− I) .

4b. Later Phan Thien (1978) proposed an exponential decrease in relaxation time

�
A= −1

τ
exp(αTr(A)) · (A− I) .

5. For different reasons, Giesekus (1982) suggested including a quadratic term to
account for the effects of anisotropic drag,

5
A= −1

τ
(I + αA) · (A− I) .
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Refinements

6. White-Metzner (1963)

σ + τ(γ̇)
5
σ= 2µ(γ̇)E, where γ̇ =

√
1
2E : E.

Use experimental µ(γ̇), and N1(γ̇)
by shear-dependent relaxation time τ(γ̇) = N1(γ̇)/2µ(γ̇)γ̇2.
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Refinements

7. Pom-pom, McLeish and Larson (1998), simplified version

Orientation:
5
A= − 1

τb
(A− I) and then S = A/Tr(A).

Stretch:
Dλ

Dt
= λ(∇u : S)− 1

τs
(λ− 1) for λ < q,

Stress: σ = −pI + 3Gλ2S.

8. Rollie-poly, Likhtman and Graham (2003)

5
A= − 1

τd
(A− I)−

2(1−
√

3/Tr(A))

τR

[
A + β

(
Tr(A)

3

)δ
(A− I)

]
,
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Conclusions

1. The hugely important 1950 paper introduced proper time-derivatives, essential
ingredients for any viscoelastic constitutive equation; and also introduced the
Oldroyd-B equation, much used today. XX

2. In the 1950 paper and in all subsequent papers, Oldroyd seems never to have
understood how the physics makes the selection between B and A, or how the physics
should be expressed (Jefferys model is not correct way), although he made a pressing
case for physics to be considered.
That has distorted our subject, to expect full co-deformation, whereas reality always
has non-affine slip. X
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Conclusions

3. Further, Oldroyd never seems to have understood the extensional viscosity crisis,
which is easily fixed by a FENE modification, when one understands the physics.
That has distorted our subject with failed computations due to the entirely avoidable
high Weissenberg-number non-problem. X

Hence: our subject would be nowhere without 1, but it would have been so much
better if we had not had 2 and 3.
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