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Motivation

Manufacture of polymeric and optical fibres.
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Shear-thinning

Newtonian Duprat, Ruyer-Quil & Giorgiutti-Dauphiné

Kliakhandler, Davis & Bankoff JFM 2001 Phys. Fluids 2000

The coating fluid is often non-Newtonian



Governing equations

Constitutive equation
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Boulogne et al, Private Communication

This talk start with power-law, with
Newtonian as special case. Elastic at end.
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Governing equations

Lubrication framework

h
Capillary pressure: p=— (32 + hXX>

Momentum: O=——+pg+
X

1
. - _1 n dp n (2+l)
Volume flux: R=7p il <pg dx) h

1

Note:(-)7 = sign(-)| - |»

Mass conservation: hi + Q, =0



Governing equations

Non-dimensionalisation

Lengthscales:
» Fibre radius, a, in x direction.
» Initial film thickness, hg, in y direction.

Time:

1
> Rayleigh instability, 27+1 (53"*3) 3

n ,th+2

he + (h2+%(G +(h+ hXX)X)%) =0

X

_ pgd

where Bond number G .
vho



Time-dependent numerical simulations

Periodic forcing at inlet: w =1

G small (thicker film):
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G big (thinner film):
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This talk: Solitary waves? When? Properties?



Stationary solitary waves

Governing equations

In the frame of the solitary waves travelling with speed c:

(cth—1)+ G%)"

h2n+l

(G + (h + hXX)X) =

h—1, as x— Foo

Numerically construct the stationary solitary waves.

> Integrate from x = —o0 to x = 0,
and from x = +o00 to x = 0.

» Hence need starting conditions at x = £o0.



Stationary solitary waves

Initial conditions for numerics

At x = +00:  h~1+h with h< 1.
Linearised equation:

" +H —Ah=0
where A= nG'~1/"c — (2n+1)G > 0.
Three solutions of exponential form:

> hy = aje™X
my real and positive: growing

mode. 25
Use in 'Back’ (1 DoF). 2t
» 77273 — 3273em2,3x 15

mo 3 complex conjugates with 1
negative real part: decaying
modes. 45 10 5 0 5 10 15

Use in ‘Front’ (2 DoF).




Stationary solitary waves

Numerical construction

For fixed G:
1. Shoot from Back, with a, = a3 = 0. Stop when A"’ =0, h' < 0.
2. Shoot from Front, with a; = 0. Stop when A’ =0, K’ <0, h > 1.5.
3. Vary the phase of a3 in Front to match h.
4. Vary speed c to match H'.

3 T T T T T

25 n=0.8, G=0.9




Stationary solitary waves

Results: n =1
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> No stationary solitary
waves for G < Gg.

> As G | Goy, hpax — 0.

Kalliadasis & Chang, J.

Fluid Mech. 1994
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» Width of the 'Main Body’
independent of G.

Agreement with experiment Quéré, Europhys. Lett. 1990:

» Critical h. to observe disturbance o a°.

3

3
_ pga 3 _
>G—Jh0:hco<a at G = Gy.
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Stationary solitary waves

Results: various n (shear-thinning and shear-thickening)

hmax

» Two branches of solutions for n < 1.

Look at large fast stationary solitary waves close to Gp.

What determines critical Gp? Relationship of h and ¢ with G?
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Large fast solitary waves

Pulse divided into 3 regions:
» 'Main body’ region: h big, x ~ O(1).

» 'Front’ and 'Back’ transition regions: h ~ O(1), x small.
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Asymptotic analysis for each region, and match. Very complicated!
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Large fast solitary waves
Main body region: leading order

h big, x ~ O(1)

For matching,
h ~ %hmax(X - X0)27

with xg = 0 at the Back and xg = 27 at the Front.

At leading order main body is at a constant pressure

13



Large fast solitary waves

Transition regions: leading order

h~ O(1), x small
(cth—1)+ G%)"
h2n+1

(G + (h+hyg),) =

Transition regions: x ~ ¢~ "/3.

Modified Bretherton equation:
(h—1)"

hfff = h2n+1) with 5 = Cn/3(X — X()).

(xo =0 at 'Back’ and xg = 27 at 'Front’.)

14



Large fast solitary waves

Transition regions: leading order
h~ O(1), x small

(cth—1)+ G%)"
h2n+1

(G + (h+hyg),) =

Transition regions: x ~ ¢~ "/3.

Modified Bretherton equation:

h—1)" _ "
heee = (h2”+1) with &=c¢ /3(X7X0).

(x = 0 at 'Back’ and xg = 27 at 'Front'.)
For matching, solutions towards 'Main Body' (h becoming large)
h~ 1P+ QE+ Ry as € — oo

Use 1 DoF to redefine origin so Q@ = 0.



Large fast solitary waves
Matching: leading order

DoFs at Back: 1—1(@ = 0) = 0. P4 and R uniquely determined.
DoFs at Front: 2 —1(Q =0) = 1 One parameter in P_ and R_.

Main body: h ~ %hmax(x —x0)? near x =0, 27.

Transition regions: h ~ %Pig + Ry as & — foo.

Matching, i.e. same quadratic:
Pf = P+

So now P_ unique and hence R_ unique.

1P = c"3(x — x0))? = L hmax(x — x0)?

hmax = 2Pc?"/3

Note: capillary pressure in the main body p = %hmax = Pc2n/3,



Large fast solitary waves
Checking scalings

Original profile

'Front’ transition region:

width scaled by ¢"/3
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Large fast solitary waves
So far have hmax(c). G yet to appear
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Large fast solitary waves
So far have hmax(c). G yet to appear

Transition regions: ~ %Pﬁz + Ry.

» Different apparent film thickness, Ry, at 'Back’ and 'Front’.

Need 1st correction of Main Body:  h ~ c2"/3hy + hy

(cth-1)+ G%)"
(G + (h + hXX)x) = p2n+1

Go + (h2 + h2XX)X =0
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Large fast solitary waves
So far have hmax(c). G yet to appear

Transition regions: ~ %Pﬁz + Ry.

» Different apparent film thickness, Ry, at 'Back’ and 'Front’.

Need 1st correction of Main Body:  h ~ c2"/3hy + hy

(cth-1)+ G%)”
(G + (h + hXX)x) = p2n+1

Go + (h2 + h2XX)X =0
Solution (hydrostatic pressure gradient):

hy = —Go(x —sinx) + Ry in 0<x<2m.

Matching gives critical Gp:
|Go= (R, — R)/2r]|

27 Gg pressure difference between pushing and pulling transitions

17



Large fast solitary waves

c as a function of G

So far have hmax(c) and critical Gp. Yet to find G(c¢).

18



Large fast solitary waves

c as a function of G

So far have hmax(c) and critical Gp. Yet to find G(c¢).
Need 2nd correction in Main Body:
h ~ C2n/3h0 + h2 + C—(Zn—l)n/3h3

G=Gy+ C7(2n71)n/3G1

1
h h XX )X — _G
(h3 + hsx) (P”+1(1 — cos x)n+1 1>

Solution
Py, (n+1)sinx _ (n+ (n+ 1) cos x) sin x
3T n(2n 4+ 1)(1 — cos x)" (2n 4+ 1)(2n — 1)(1 — cos x)"
N (n—=1)(n+ (n+ 1) cosx) [x 1 i~ Gyx

(2n +1)(2n — 1) Jr (1 — cost)n—1

18



Large fast solitary waves

c as a function of G

Near x = xp
h3 ~ S(X — X0)172n 4+ Di—Gix + ...

The singular term matches the same in transition regions.
D different at the 'Back’ and 'Front’.

No terms to match with them from transition regions.
Hence need:

v vyVvYyy

G = (D, —D_)/2m

Finally we have found the relationship between ¢ and G

G = Gy+ C—(Zn—l)n/:‘BG1

27 Gy is the extra pressure difference compared with n =1
to drive flow through main body
19



Large fast solitary waves

Results

/3

'

» When n < 1, G; < 0. Negative slope at Gg.
» When n > 1, G; > 0. Positive slope at Gy.
» When n =1, G; = 0. No relationship between G and c yet.

G = Gy+c P3G

Plot ¢—(2n=1)n/3
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More terms

transition regions

With scaling &€ = ¢"*(x — xp),
(h—1)" o3 n _yin(h—1)""1GYn
hfg’c&:W—C /hg—C G+c T
Expand h as

heho+c 2By 4 ¢ "hy+ ¢ Yhy + ¢4 3hs £ ...

111 (h - l)n P 2 1—2n
= — ~ — S
ho p2n+l ho > €+ Ry + 5x
-1
111 (hg —1)"7" (=(n+1)hy + (2n + 1)) ’ P 4 at 3—2n
hy" = 2 hy — hg, h2~—55 +t= ZPEP b on + kot
-1
o _ (ho = 1)"""(=(n+1)ho + (2n + 1)) Go 53i
h3 2 h3 —Gg,  h3 N*aé TPE ey
(ho —1)""H(—=(n+1)ho + (20 + 1)) 1 2
' = P ha hare Saa£ €+ cax
n(ho — 1)" 1G5/
2 )
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More terms

main body

With h = c2"/3H,

(H + Hx),

Expand H as

Heo Ho4+ 23 Hy 4+ ¢ CrtInB e 4 ey 4 e Hs 4+ P Hg 4 ...

and G as

Hy + HY'' = o,
/ ua
Hy + HY = —

H + Hy' =

Hy +H," =0,
Hg + Hy'" =0,
He + H = —

-G+

c—2n/3 Gl/n(c—172n/3))n
H H
Hn+1 :

(1-

_ 7C72n/3G + C7(2n+1)n/3

G~ Gy + G Cr I3 L G234

Ho = P(1 — cos x)
Go Hy = Gp (sinx — x) + Ay + Gy cos x
1

Hy ~ S 72" 4 Dy — Gux + kx> 720

Hy = Ag + By sinx + C4 cos x
Hs = As + Bs sin x + Cs cos x
G, Hg = Gp(sinx — x) + Ag + Bg sin x + Cg cos x

22



More terms

Matching: transition regions

Transition regions=
ho
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More terms

Matching: main body region

Main body=

[gx —Bx + & X6—|—

[—Goxo + A2+ G — %X

SX172n761X0 + Dy + k2X3

]

A5 + C5 - %Xﬂ

Goxg + As + Co — X2 -

[
[A4+C —%X2—|—..
[
-

]

2 _

Qx4+ axt .

T2 4 fax®T2 4

G2+Ba x3 4. ]
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More terms: matching two regions

At cO:
Go = (Rs — R_)/2n
At c—@rt=n)/3,
G =—(D. —D_)/2n
At cL:
G2 = (C2+ — CQ_)/27T

Hence,

G = GO + G1C7(2n71)n/3 + G2C72n/3

25



More terms: Results

G = GO + Glcf(2n71)n/3 + G2C72n/3

Plot G vs c—(2n—1)n/3

n=0.9 n=12

1.2 T T T T 07 —— T T
Numerical Data —+— Numerical Data —+—
1st Prediction ------ 1st Prediction
11 2nd Prediction 7 - 2nd Prediction
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Small improvement by second correction to G
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More terms: Results

G = Go+ G @n=n)/3 | G,c—2n/3

When n=1, G; =0, so
G =Go+ G %3
Need even more terms for Newtonian n = 1 — see beyond end.

27 Gy comes from corrections in the transition regions due to the
small axial curvature

27



Two branches for n < 1

100 T
n=0.6 —<—
n=0.8 ——
n=1 ——
80 - n=12 —e— |
n=1.4
60 ,F_lnlle i
é time
£ blow-u .
40 | P Solitary waves -
20 B
0 ! T ]
0 0.5 1 15 2

G
Upper branch is unstable — solutions either blow up or decay to
lower branch.

Hence there is a maximum size of stable solitary for shear-thinning
fluids.
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Summarising

Main Body at constant pressure  h ~ c2"/3P(1 — cos x).

Cause of all difficulty: length 27 not changing.

29



Summarising
Main Body at constant pressure  h ~ c2"/3P(1 — cos x).

Cause of all difficulty: length 27 not changing.

271Gy is extra hydrostatic pressure difference needed to push front
transisiton region compared with pulling rear one.

Three mechanisms determine how ¢ depends on G — Gp:
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Summarising

Main Body at constant pressure  h ~ c2"/3P(1 — cos x).
Cause of all difficulty: length 27 not changing.

271Gy is extra hydrostatic pressure difference needed to push front
transisiton region compared with pulling rear one.

Three mechanisms determine how ¢ depends on G — Gp:
» For power-law fluids, G — Gy ~ Glcf(z”*l)”/3
for pressure to drive flow though main body,
» For Newtonian (n = 1) fluids, G — Gy ~ Gyc=2/3
effect of axial capillary pressure in the transition regions,

» For large amplitudes comparable with fibre radius,
G — Gy ~ —ampc~2/33PG,
because pendant drop is longer.

29
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Symmetry breaking instability with elastic liquids

with Claire Mcllroy

» Francois Boulogne observed in his Paris PhD thesis that
the coating of an elastic liquid was never axisymmetric,
but was always thicker on one side.

» Flow in thin coating is mainly simple shear and quasi-steady
(varies over distances much greater than thickness).

» Hence rheology is a viscosity plus normal stresses.

» First normal stress difference = tension in streamlines —
enhanced effective surface tension.

» Second normal stress difference = tension in vortex lines —
new instability.

31



Symmetry breaking instability with elastic liquids

Governing equation

Extra non-Newtonian stress for a second-order fluid

v
o"MN = _2aE + BE?,

« tension in the streamlines, 3 < 0 tension in the vortex lines.
Oh on? 0?

\V4 3v v2 A 5

62

h° =0,

(curiously A ~ «/6, but B ~ —(3/80)

Now study development of lop-sided flow with h(0, t),
no z-variations.

he + (h*(hoo + h+ Bh*)g),, =0

32



Symmetry breaking instability with elastic liquids

Time evolution

h(f,t) att=2"n=-2,...,11, for B=0.5.

Dotted blue is a steady state which wets only 0 < 6 < 1.9071

(Interesting intermediate times: drift of an off-centred cylinder.)

33



Symmetry breaking instability with elastic liquids

Steady states

Steady states for various B

Length of steady state




Symmetry breaking instability with elastic liquids

Structure at late times

The shape and the pressure (stress ogg) at t = 103 for B = 0.5

There two constant pressure regions.

Higher pressure region to the right drains into the lower pressure
region to the left through a small neck.



Symmetry breaking instability with elastic liquids

The neck between the two constant pressure regions

Universal shape of the neck between the two constant pressure
regions, for t = 50(50) 103 and for B = 0.5.

h/hmin

(X - Xmin) Qh;;lin/hmin

Blue shape from Bretherton's equation.
36



Symmetry breaking instability with elastic liquids

Draining of small region

0.16 | ///
h(ﬂ.) 014 P ~
0.12 . -
0.1 ///
0.08
0.04
0 0 0‘05 0‘.1 0.‘15 0.2 0. ‘25 0‘3 0‘35 04
i—1/4
1 L (K L)cos L +sin L\ */*
h(r) = + cos ((m — L) cos L + sin
tl/4 4Qsin® L

with Bretherton @ = 1.20936 and for B = 0.5 pressure in steady
state K = 3.7297 and length of steady state L = 1.9171.



Future Work

v

Normal stress effect. /

v

Relax the thin film approximation? ./

v

Newtonian fluid n=1/

v

What happens at big G? /

v

Finite flow domain for shear-thinning fluids /

» Comparison with experimental data.

38
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n = 1 Newtonian fluid, even more terms

Matching: transition regions

Transition regions=

ho h2 h3
c2/3 [ §x2 _5)(4
+O Re +2x32 — g
+c 1/3[ 73,3% +%X2
+c_2/3[ +cot
+ctlog [ +35p%
e[ ARy BRedAN0a 4G 60y 4y,

ha

o)
+ax6
a 4
_TZ[X
11
+ 1og0P2 X

as 2
+35X

3

+ o+ + + 4+ +
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n = 1 Newtonian fluid, even more terms
Matching: main body region

Main body =
§X2 X+5X6+...}
Goxo + Az + G — x2 — §x3 + Sx* + .. ]

s+ (As+ C3)+(18P2 + B3)x — $x% + (ympr — D).

A5+C5 C5 2+ ]

20112Ry) | 4(1124,-3C) | 4G
15P3x3 5P+ 38 logx—Gaxo + Ag + G ... |

[
-
-
+C72/3 [ GQX0+A4+C4+B4X C4X27%X3+"']
[
E
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n = 1 Newtonian fluid, even more terms

Results

At % Gy=(R.—R.)/2n
At C_2/3: Gz — (C2+ _ C2,)/27T
At Cilj G3:(C3+_C3_)/27r
Hence,

G = Go+ Goc 23 ¢ Gsc !

T
0.74 | Numencal Da}ta I i

Prediction to O(c™;) ====--
0.72 |- Prediction to 0(c” ) _— ,
0.7
0.68
© 066
0.64
0.62
0.6

0.58 ! ‘ ‘ ‘
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Big G

1 1
h~1+ —=h c~<2+>Grlv+chi_1
G n

where h; satisfies the nonlinear equation

~1 1\?
"+ h' = ncihy + b2 <—n(2n+1)+n(n2) <2+n> >

This equation can be solved numerically to give the value of ¢; for
different values of n.

44



Big G results

0.25

1l

n=0.8

Numerical Data ——
Theoretical Prediction

1/G
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0.15

0.1 |

0.05 - Numerical Data —+— ]|
) Theoret‘ical Pregiction

Il
0 0.2 0.4 0.6 0.8 1
1/G
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Finite flow domain for shear-thinning fluids
Modified Bretherton equation

(h—1)"

"o
h™ = h2n+1

Integrating from oo where h ~ 1+ h (h < 1), h satisfies:

h" = h". <= No exponential solutions for n # 1.

Solution at 'Back’

h=A— &)™, n<1
h becomes 0 at a finite distance.

While viscosity thins as v — oo it thickens as v — 0,
and so flow stops in a finite distance.
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Finite flow domain for shear-thinning fluids
Solution at 'Front’ (n = 0.8)

Decaying nonlinear oscillations

1.4
13
12
11
= 1
0.9
0.8
0.7
0.6

h1/15

Decays to zero in finite distance

o
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max VS Xmax
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Each half-cycle normalised by
maximum and by wavelength
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1t e, R
08| / . d

06/ \ 1
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ol / i

02/ A

ok L L L
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Universal shape
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