Instabilities of a thin coating on a vertical fibre; Newtonian, shear-thinning, and elastic liquids

Liyan Yu & John Hinch

CMS-DAMTP, University of Cambridge

February 22, 2016

and Claire McIlroy for elastic liquids

Motivation

Manufacture of polymeric and optical fibres.

Newtonian

Shear-thinning Duprat, Ruyer-Quil & Giorgiutti-Dauphin´e

Kliakhandler, Davis & Bankoff JFM 2001

Phys. Fluids 2009

The coating fluid is often non-Newtonian

Constitutive equation

Power-law viscosity:
$$
\mu = \beta \left| \frac{\partial u}{\partial y} \right|^{n-1}
$$

Xanthan solutions

This talk start with power-law, with Newtonian as special case. Elastic at end.

Constitutive equation

This talk start with power-law, with Newtonian as special case. Elastic at end.

Lubrication framework

Capillary pressure:

\n
$$
p = -\gamma \left(\frac{h}{a^2} + h_{xx} \right)
$$
\nMomentum:

\n
$$
0 = -\frac{dp}{dx} + \rho g + \frac{\partial \sigma_{xy}}{\partial y}
$$
\nVolume flux:

\n
$$
Q = \beta^{-\frac{1}{n}} \frac{n}{2n+1} \left(\rho g - \frac{dp}{dx} \right)^{\frac{1}{n}} h^{(2+\frac{1}{n})}
$$
\nNote:

\n
$$
(\cdot)^{\frac{1}{n}} = \text{sign}(\cdot) | \cdot |^{\frac{1}{n}}
$$

Mass conservation: $h_t + Q_x = 0$

Non-dimensionalisation

Lengthscales:

- Fibre radius, a , in x direction.
- Initial film thickness, h_0 , in y direction.

Time:

► Rayleigh instability,
$$
\frac{2n+1}{n} \left(\frac{\beta a^{n+3}}{\gamma b_0^{n+2}} \right)^{\frac{1}{n}}
$$
.

$$
h_t + \left(h^{2+\frac{1}{n}}(G + (h+h_{xx})_x)^{\frac{1}{n}}\right)_x = 0
$$

where Bond number $G = \frac{\rho g a^3}{\gamma h_0}$ $\frac{\partial g$ a γh_0 .

Time-dependent numerical simulations

Periodic forcing at inlet: $\omega = 1$

G big (thinner film):

Governing equations

In the frame of the solitary waves travelling with speed c :

$$
(G + (h + h_{xx})_x) = \frac{\left(c(h - 1) + G^{\frac{1}{n}}\right)^n}{h^{2n+1}}
$$

 $h \to 1$, as $x \to \pm \infty$

Numerically construct the stationary solitary waves.

- Integrate from $x = -\infty$ to $x = 0$, and from $x = +\infty$ to $x = 0$.
- \triangleright Hence need starting conditions at $x = \pm \infty$.

Initial conditions for numerics

At $x = \pm \infty$: $h \sim 1 + \tilde{h}$ with $\tilde{h} \ll 1$. Linearised equation:

$$
\tilde{h}''' + \tilde{h}' - A\tilde{h} = 0
$$

where
$$
A = nG^{1-1/n}c - (2n+1)G > 0
$$
.

Three solutions of exponential form:

\n- $$
h_1 = a_1 e^{m_1 x}
$$
\n- m_1 real and positive: growing mode.
\n- Use in 'Back' (1 DoF).
\n

▶
$$
h_{2,3} = a_{2,3}e^{m_{2,3}x}
$$
 $m_{2,3}$ complex conjugates with negative real part: decaying modes.

Use in 'Front' (2 DoF).

Numerical construction

For fixed G :

- 1. Shoot from Back, with $a_2 = a_3 = 0$. Stop when $h'' = 0$, $h' < 0$.
- 2. Shoot from Front, with $a_1 = 0$. Stop when $h'' = 0$, $h' < 0$, $h > 1.5$.
- 3. Vary the phase of $a_{2,3}$ in Front to match h.
- 4. Vary speed c to match h' .

Results: $n = 1$ Kalliadasis & Chang, J. Fluid Mech. 1994

$$
\blacktriangleright \ \text{As} \ \ G \downarrow G_{0+}, \ h_{\text{max}} \to \infty.
$$

▶ Width of the 'Main Body' independent of G.

Agreement with experiment Quéré, Europhys. Lett. 1990:

► Critical h_c to observe disturbance $\propto a^3$.

$$
\blacktriangleright \ \ G = \frac{\rho g a^3}{\sigma h_0} \Rightarrow h_c \propto a^3 \quad \text{at} \quad G = G_0.
$$

Results: various n (shear-thinning and shear-thickening)

Two branches of solutions for $n < 1$.

Look at large fast stationary solitary waves close to G_0 .

What determines critical G_0 ? Relationship of h and c with G ?

Pulse divided into 3 regions:

- \triangleright 'Main body' region: h big, $x \sim O(1)$.
- ► 'Front' and 'Back' transition regions: $h \sim O(1)$, x small.

Asymptotic analysis for each region, and match. Very complicated!

Main body region: leading order

h big,
$$
x \sim O(1)
$$

\n
$$
(G + (\mathbf{h} + \mathbf{h}_{xx})_{x}) = \frac{(c(h-1) + G^{\frac{1}{n}})^{n}}{h^{2n+1}}
$$

Solution: constant capillary pressure ($p=\frac{1}{2}$ $\frac{1}{2}h_{\text{max}}$)

$$
h=\frac{1}{2}h_{\max}\left(1-\cos x\right) \quad \text{in} \quad 0\leq x\leq 2\pi.
$$

For matching,

$$
h \sim \frac{1}{4} h_{\text{max}}(x - x_0)^2,
$$

with $x_0 = 0$ at the Back and $x_0 = 2\pi$ at the Front.

At leading order main body is at a constant pressure

Transition regions: leading order

$$
h \sim O(1), x \text{ small}
$$

$$
(G + (h + \mathbf{h}_{xx})_x) = \frac{\left(c(\mathbf{h} - 1) + G^{\frac{1}{n}}\right)^n}{h^{2n+1}}
$$

Transition regions: $x \sim c^{-n/3}$.

Modified Bretherton equation:

$$
h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}}
$$
 with $\xi = c^{n/3}(x - x_0)$.
\n($x_0 = 0$ at 'Back' and $x_0 = 2\pi$ at 'Front'.)

Transition regions: leading order

$$
h \sim O(1), x \text{ small}
$$

$$
(G + (h + \mathbf{h}_{xx})_x) = \frac{\left(c(\mathbf{h} - 1) + G^{\frac{1}{n}}\right)^n}{h^{2n+1}}
$$

Transition regions: $x \sim c^{-n/3}$.

Modified Bretherton equation:

$$
h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}}
$$
 with $\xi = c^{n/3}(x-x_0)$.
\n($x_0 = 0$ at 'Back' and $x_0 = 2\pi$ at 'Front'.)

For matching, solutions towards 'Main Body' (h becoming large)

$$
h \sim \frac{1}{2} P_{\pm} \xi^2 + Q \xi + R_{\pm}
$$
 as $\xi \to \pm \infty$

Use 1 DoF to redefine origin so $Q = 0$.

Matching: leading order

DoFs at Back: $1-1(Q = 0) = 0$. P_+ and R_+ uniquely determined. DoFs at Front: $2 - 1(Q = 0) = 1$. One parameter in $P_-\$ and $R_-\$.

Main body: $h \sim \frac{1}{4}$ $\frac{1}{4}h_{\text{max}}(x-x_0)^2$ near $x_0=0, 2\pi$.

Transition regions: $h \sim \frac{1}{2}$ $\frac{1}{2}P_{\pm}\xi^2 + R_{\pm}$ as $\xi \to \pm \infty$. Matching, i.e. same quadratic:

$$
P_- = P_+
$$

So now $P_$ unique and hence $R_$ unique.

$$
\frac{1}{2}P(\xi = c^{n/3}(x - x_0))^2 = \frac{1}{4}h_{\text{max}}(x - x_0)^2
$$

$$
h_{\text{max}} = 2Pc^{2n/3}
$$

Note: capillary pressure in the main body $p = \frac{1}{2}h_{max} = Pc^{2n/3}$.

Checking scalings

Large fast solitary waves So far have $h_{\text{max}}(c)$. G yet to appear

Large fast solitary waves So far have $h_{\text{max}}(c)$. G yet to appear

Transition regions: $h \sim \frac{1}{2}$ $\frac{1}{2}P\xi^2 + R_{\pm}$.

 \triangleright Different apparent film thickness, R_{+} , at 'Back' and 'Front'.

Need 1st correction of Main Body: $h \sim c^{2n/3} h_0 + h_2$

$$
(\mathbf{G} + (\mathbf{h} + \mathbf{h}_{xx})_{x}) = \frac{(c(h-1) + G^{\frac{1}{n}})^{n}}{h^{2n+1}}
$$

$$
G_0 + (h_2 + h_{2xx})_{x} = 0
$$

Large fast solitary waves So far have $h_{\text{max}}(c)$. G yet to appear

Transition regions: $h \sim \frac{1}{2}$ $\frac{1}{2}P\xi^2 + R_{\pm}$.

 \triangleright Different apparent film thickness, R_{+} , at 'Back' and 'Front'.

Need 1st correction of Main Body: $h \sim c^{2n/3} h_0 + h_2$

$$
(\mathbf{G} + (\mathbf{h} + \mathbf{h}_{xx})_{x}) = \frac{\left(c(h-1) + G^{\frac{1}{n}}\right)^{n}}{h^{2n+1}}
$$

$$
G_{0} + (h_{2} + h_{2xx})_{x} = 0
$$

Solution (hydrostatic pressure gradient):

$$
h_2 = -G_0(x - \sin x) + R_+
$$
 in $0 \le x \le 2\pi$.

Matching gives critical G_0 :

$$
G_0=(R_+-R_-)/2\pi
$$

 $2\pi G_0$ pressure difference between pushing and pulling transitions

Large fast solitary waves c as a function of G

So far have $h_{\text{max}}(c)$ and critical G_0 . Yet to find $G(c)$.

Large fast solitary waves c as a function of G

So far have $h_{\text{max}}(c)$ and critical G_0 . Yet to find $G(c)$.

Need 2nd correction in Main Body:

$$
h \sim c^{2n/3} h_0 + h_2 + c^{-(2n-1)n/3} h_3
$$

$$
G = G_0 + c^{-(2n-1)n/3} G_1
$$

$$
(h_3 + h_{3xx})_x = \left(\frac{1}{P^{n+1}(1 - \cos x)^{n+1}} - G_1\right)
$$

Solution

$$
P^{n+1} h_3 = \frac{(n+1)\sin x}{n(2n+1)(1-\cos x)^n} - \frac{(n+(n+1)\cos x)\sin x}{(2n+1)(2n-1)(1-\cos x)^n} + \frac{(n-1)(n+(n+1)\cos x)}{(2n+1)(2n-1)} \int_{\pi}^{x} \frac{1}{(1-\cos t)^{n-1}} dt - G_1 x
$$

c as a function of G

Near $x = x_0$

$$
h_3 \sim S(x-x_0)^{1-2n} + D_{\pm} - G_1 x + \ldots
$$

- \triangleright The singular term matches the same in transition regions.
- \triangleright D_{+} different at the 'Back' and 'Front'.
- \triangleright No terms to match with them from transition regions.
- \blacktriangleright Hence need:

$$
G_1=(D_+-D_-)/2\pi
$$

Finally we have found the relationship between c and G

$$
G = G_0 + c^{-(2n-1)n/3} G_1
$$

 $2\pi G_1$ is the extra pressure difference compared with $n=1$ to drive flow through main body

Large fast solitary waves Results

$$
G = G_0 + c^{-(2n-1)n/3} G_1
$$

 \blacktriangleright When $n < 1$, $G_1 < 0$. Negative slope at G_0 .

- \blacktriangleright When $n > 1$, $G_1 > 0$. Positive slope at G_0 .
- \triangleright When $n = 1$, $G_1 = 0$. No relationship between G and c yet.

More terms

transition regions

With scaling $\xi = c^{n/3}(x - x_0)$, $h_{\xi\xi\xi} = \frac{(h-1)^n}{h^{2n+1}}$ $\frac{(h-1)^n}{h^{2n+1}}-c^{-2n/3}h_{\xi}-c^{-n}G+c^{-1}\frac{n(h-1)^{n-1}G^{1/n}}{h^{2n+1}}$ $\frac{2}{h^{2n+1}} + \ldots$

Expand h as

$$
h \sim h_0 + c^{-2n/3}h_2 + c^{-n}h_3 + c^{-1}h_4 + c^{-4n/3}h_5 + \ldots
$$

$$
h_0''' = \frac{(h-1)^n}{h^{2n+1}},
$$

\n
$$
h_0 \sim \frac{P}{2} \xi^2 + R_{\pm} + S_x^{1-2n}
$$

\n
$$
h_2''' = \frac{(h_0 - 1)^{n-1}(-n+1)h_0 + (2n+1))}{h_0^{2n+2}} h_2 - h_0',
$$

\n
$$
h_2 \sim -\frac{P}{4!} \xi^4 + \frac{a_{2\pm}}{2} \xi^2 + c_{2\pm} + k_2 \xi^{3-2n}
$$

\n
$$
h_3''' = \frac{(h_0 - 1)^{n-1}(-n+1)h_0 + (2n+1))}{h_0^{2n+2}} h_3 - G_0,
$$

\n
$$
h_3 \sim -\frac{G_0}{3!} \xi^3 + \frac{a_{3\pm}}{2} \xi^2 + c_{3\pm}
$$

\n
$$
h_4''' = \frac{(h_0 - 1)^{n-1}(-n+1)h_0 + (2n+1))}{h_0^{2n+2}} h_4
$$

\n
$$
h_4 \sim \frac{1}{2} a_{4\pm} \xi^2 + c_{4\pm}
$$

\n
$$
h_4 \sim \frac{1}{2} a_{4\pm} \xi^2 + c_{4\pm}
$$

\n
$$
h_4'' - \frac{n(h_0 - 1)^{n-1} G_0^{1/n}}{h_0^{2n+1}},
$$

More terms

main body

With $h = c^{2n/3}H$, $(H + H_{xx})_x = -c^{-2n/3}G + c^{-(2n+1)n/3}\frac{(1 - \frac{c^{-2n/3}}{H} + \frac{G^{1/n}(c^{-1-2n/3})}{H})^n}{H^{n+1}}$ $\frac{H}{H^{n+1}}$. Expand H as $H \sim H_0 + c^{-2n/3}H_2 + c^{-(2n+1)n/3}H_3 + c^{-n}H_4 + c^{-1}H_5 + c^{-4n/3}H_6 + \ldots$ and G as

$$
G \sim G_0 + G_1 c^{-(2n-1)n/3} + G_2 c^{-2n/3} + \dots
$$

$$
H'_0 + H''_0 = 0,
$$

\n
$$
H'_2 + H''_2 = -G_0
$$

\n
$$
H'_3 + H''_3 = -G_1 + \frac{1}{P^{n+1}(1 - \cos x)^{n+1}},
$$

\n
$$
H'_4 + H''_4 = 0,
$$

\n
$$
H'_5 + H''_5 = 0,
$$

\n
$$
H'_6 + H''_6 = -G_2,
$$

\n
$$
H'_7 + H''_8 = 0,
$$

\n
$$
H'_8 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H'_8 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

\n
$$
H'_9 - Sx^{1-2n} + D_{\pm} - G_1x + k_2x^{3-2n}
$$

$$
H_0 = P(1 - \cos x)
$$

\n
$$
H_2 = G_0 (\sin x - x) + A_2 + C_2 \cos x
$$

\n
$$
H_3 \sim Sx^{1-2n} + D_{\pm} - G_1 x + k_2 x^{3-2n}
$$

\n
$$
H_4 = A_4 + B_4 \sin x + C_4 \cos x
$$

\n
$$
H_5 = A_5 + B_5 \sin x + C_5 \cos x
$$

\n
$$
H_6 = G_2 (\sin x - x) + A_6 + B_6 \sin x + C_6 \cos x
$$

More terms Matching: transition regions

Transition regions=

$$
h_0 \t h_2 \t h_3 \t h_4 \t h_5
$$
\n
$$
c^{\frac{2n}{3}} \left[\begin{array}{ccc} \frac{P}{2} x^2 & -\frac{P}{4!} x^4 \\ +C^0 \left[R_+ + \frac{a_2}{2} x^2 & -\frac{G_0}{3!} x^3 & -\frac{a_2}{4!} x^4 & + \dots \right] \\ +C^{-\frac{2n^2}{3} + \frac{n}{3}} \left[S x^{1-2n} & + k_2 x^{3-2n} & + k_3 x^{5-2n} + \dots \right] \\ +C^{-\frac{n}{3}} \left[S x^{1-2n} & + k_2 x^{3-2n} & + \dots \right] \\ +C^{\frac{2n}{3} - 1} \left[S x^{1-2n} & + \frac{a_3}{2} x^2 & + \dots \right] \\ +C^{-\frac{2n}{3}} \left[S x^{1-2n} & + \frac{a_3}{2} x^2 & + \dots \right] \end{array}
$$

More terms Matching: main body region

Main body=

$$
c^{\frac{2n}{3}} \left[\frac{P}{2}x^2 - \frac{P}{4!}x^4 + \frac{P}{6!}x^6 + \dots \right]
$$

+
$$
c^0 \left[-G_0x_0 + A_2 + C_2 - \frac{C_2}{2}x^2 - \frac{G_0}{3!}x^3 + \frac{C_2}{4!}x^4 + \dots \right]
$$

+
$$
c^{-\frac{2n^2}{3} + \frac{n}{3}} \left[Sx^{1-2n} - G_1x_0 + D_{\pm} + k_2x^{3-2n} + k_3x^{5-2n} + \dots \right]
$$

+
$$
c^{-\frac{n}{3}} \left[A_4 + C_4 - \frac{C_4}{2}x^2 + \dots \right]
$$

+
$$
c^{\frac{2n}{3}-1} \left[A_5 + C_5 - \frac{C_5}{2}x^2 \right]
$$

+
$$
c^{-\frac{2n}{3}} \left[-G_2x_0 + A_6 + C_6 - \frac{C_6}{2}x^2 - \frac{G_2 + B_6}{3!}x^3 + \dots \right]
$$

More terms: matching two regions

At c^0 : $G_0 = (R_+ - R_-)/2\pi$ At $c^{-(2n^2-n)/3}$: $G_1 = -(D_+ - D_-)/2\pi$ At c^{-1} : $G_2 = (c_{2+} - c_{2-})/2\pi$ Hence, $G = G_0 + G_1 c^{-(2n-1)n/3} + G_2 c^{-2n/3}$

More terms: Results

$$
G = G_0 + G_1 c^{-(2n-1)n/3} + G_2 c^{-2n/3}
$$

Plot *G* vs
$$
c^{-(2n-1)n/3}
$$

 $n = 0.9$

Small improvement by second correction to G

More terms: Results

$$
G = G_0 + G_1 c^{-(2n^2-n)/3} + G_2 c^{-2n/3}
$$

When $n = 1$, $G_1 = 0$, so

$$
G = G_0 + G_2 c^{-2/3}
$$

Need even more terms for Newtonian $n = 1$ – see beyond end.

 $2\pi G_2$ comes from corrections in the transition regions due to the small axial curvature

Two branches for $n < 1$

Upper branch is unstable $-$ solutions either blow up or decay to lower branch.

Hence there is a maximum size of stable solitary for shear-thinning fluids.

Summarising

Main Body at constant pressure $h \sim c^{2n/3} P(1-\cos x)$.

Cause of all difficulty: length 2π not changing.

Summarising

Main Body at constant pressure $h \sim c^{2n/3} P(1 - \cos x)$.

Cause of all difficulty: length 2π not changing.

 $2\pi G_0$ is extra hydrostatic pressure difference needed to push front transisiton region compared with pulling rear one.

Three mechanisms determine how c depends on $G - G_0$:

Summarising

Main Body at constant pressure $h \sim c^{2n/3}P(1 - \cos x)$.

Cause of all difficulty: length 2π not changing.

 $2\pi G_0$ is extra hydrostatic pressure difference needed to push front transisiton region compared with pulling rear one.

Three mechanisms determine how c depends on $G - G_0$:

- ► For power-law fluids, $G G_0 \sim G_1 c^{-(2n-1)n/3}$ for pressure to drive flow though main body,
- ► For Newtonian $(n=1)$ fluids, $G G_0 \sim G_2 c^{-2/3}$ effect of axial capillary pressure in the transition regions,
- \triangleright For large amplitudes comparable with fibre radius,

 $G - G_0 \sim -\text{ampc}^{-2/3}3PG_0$

because pendant drop is longer.

Symmetry breaking instability with elastic liquids with Claire McIlroy

- \triangleright François Boulogne observed in his Paris PhD thesis that the coating of an elastic liquid was never axisymmetric, but was always thicker on one side.
- \triangleright Flow in thin coating is mainly simple shear and quasi-steady (varies over distances much greater than thickness).
- \blacktriangleright Hence rheology is a viscosity plus normal stresses.
- First normal stress difference = tension in streamlines \rightarrow enhanced effective surface tension.
- \triangleright Second normal stress difference = tension in vortex lines \rightarrow new instability.

Symmetry breaking instability with elastic liquids Governing equation

Extra non-Newtonian stress for a second-order fluid

$$
\sigma^{NN} = -2\alpha \overline{\mathring{E}} + \beta E^2,
$$

 α tension in the streamlines, β < 0 tension in the vortex lines.

$$
\frac{\partial h}{\partial t} + G \frac{\partial h^3}{\partial z} + \nabla h^3 \nabla (h + \nabla^2 h) + A \frac{\partial^2}{\partial z^2} h^5 + B \frac{\partial^2}{\partial \theta^2} h^5 = 0,
$$
\n(curiously $A \sim \alpha/6$, but $B \sim -\beta/80$)

Now study development of lop-sided flow with $h(\theta, t)$, no z-variations.

$$
h_t + (h^3(h_{\theta\theta} + h + Bh^2)_\theta)_\theta = 0
$$

Symmetry breaking instability with elastic liquids Time evolution

$$
h(\theta, t)
$$
 at $t = 2^n$ $n = -2, ..., 11$, for $B = 0.5$.

Dotted blue is a steady state which wets only $0 \le \theta \le 1.9071$ (Interesting intermediate times: drift of an off-centred cylinder.)

Symmetry breaking instability with elastic liquids Steady states

Steady states for various B

Length of steady state

Symmetry breaking instability with elastic liquids Structure at late times

The shape and the pressure (stress $\sigma_{\theta\theta})$ at $t=10^3$ for $B=0.5$

There two constant pressure regions.

Higher pressure region to the right drains into the lower pressure region to the left through a small neck.

Symmetry breaking instability with elastic liquids

The neck between the two constant pressure regions

Universal shape of the neck between the two constant pressure regions, for $t=50\,(50)\,10^3$ and for $B=0.5.$

Blue shape from Bretherton's equation.

Symmetry breaking instability with elastic liquids Draining of small region

with Bretherton $Q = 1.20936$ and for $B = 0.5$ pressure in steady state $K = 3.7297$ and length of steady state $L = 1.9171$.

- \triangleright Normal stress effect. $\sqrt{ }$
- ► Relax the thin film approximation? \sqrt
- ► Newtonian fluid $n = 1 \sqrt{ }$
- ► What happens at big G ? $\sqrt{ }$
- Finite flow domain for shear-thinning fluids $\sqrt{}$
- \triangleright Comparison with experimental data.

$n = 1$ Newtonian fluid, even more terms

Matching: transition regions

Transition regions=

$$
h_0 \t h_2 \t h_3 \t h_4
$$

\n
$$
c^{2/3} \left[\begin{array}{ccc} \frac{\rho}{2} x^2 & -\frac{\rho}{4!} x^4 & +\frac{\rho}{6!} x^6 & + \dots \end{array} \right]
$$

\n
$$
+ c^0 \left[R_{\pm} + \frac{a_2}{2} x^2 & -\frac{G_0}{3!} x^3 & -\frac{a_2}{4!} x^4 & + \dots \right]
$$

\n
$$
+ c^{-1/3} \left[-\frac{2}{3P^2 x} & +\frac{a_3}{2} x^2 & +\frac{11}{1080P^2} x^3 & + \dots \right]
$$

\n
$$
+ c^{-2/3} \left[+c_{2\pm} + \frac{4G_0}{9P^3} & + \dots \right]
$$

\n
$$
+ c^{-1} \left[\frac{2(1+2R_{\pm})}{15P^3 x^3} + \frac{8R_{\pm}+4+20a_2}{15P^3 x} + \frac{4G_0}{3P^3} \log x + c_{3\pm} & + \dots \right]
$$

$n = 1$ Newtonian fluid, even more terms

Matching: main body region

Main body $=$

$$
c^{2/3} \left[\frac{P}{2}x^2 - \frac{P}{4!}x^4 + \frac{P}{6!}x^6 + \dots \right]
$$

+
$$
c^0 \left[-G_0x_0 + A_2 + C_2 - \frac{C_2}{2}x^2 - \frac{G_0}{3!}x^3 + \frac{C_2}{4!}x^4 + \dots \right]
$$

+
$$
c^{-1/3} \left[-\frac{2}{3P^2x} + (A_3 + C_3) + (\frac{1}{18P^2} + B_3)x - \frac{C_3}{2}x^2 + (\frac{1}{1080P^2} - \frac{B_3}{3!})x^3 \dots \right]
$$

+
$$
c^{-2/3} \left[-G_2x_0 + A_4 + C_4 + B_4x - \frac{C_4}{2}x^2 - \frac{G_2}{3!}x^3 + \dots \right]
$$

+
$$
c^{-1} \left[\frac{2(1+2R_+)}{15P^3x^3} + \frac{4(1+2A_2-3C_2)}{15P^3x} + \frac{4G_0}{3P^3} \log x - G_3x_0 + A_6 + C_6 \dots \right]
$$

$n = 1$ Newtonian fluid, even more terms Results

At
$$
c^0
$$
: $G_0 = (R_+ - R_-)/2\pi$
At $c^{-2/3}$: $G_2 = (c_{2+} - c_{2-})/2\pi$
At c^{-1} : $G_3 = (c_{3+} - c_{3-})/2\pi$
Hence,

$$
G=G_0+G_2c^{-2/3}+G_3c^{-1}\\
$$

$$
h \sim 1 + \frac{1}{G} h_1 \quad c \sim \left(2 + \frac{1}{n}\right) G^{\frac{1}{n}} + c_1 G^{\frac{1}{n}-1}
$$

where h_1 satisfies the nonlinear equation

$$
h'_1 + h''_1 = nc_1h_1 + h_1^2 \left(-n(2n+1) + \frac{n(n-1)}{2} \left(2 + \frac{1}{n} \right)^2 \right)
$$

This equation can be solved numerically to give the value of c_1 for different values of n.

 $n = 0.8$

 $n = 1.2$

Finite flow domain for shear-thinning fluids

Modified Bretherton equation

$$
h''' = \frac{(h-1)^n}{h^{2n+1}}
$$

Integrating from $\pm\infty$ where $h \sim 1 + \tilde{h}$ ($\tilde{h} \ll 1$), \tilde{h} satisfies:

 $\tilde{h}''' = \tilde{h}''$. \Leftarrow No exponential solutions for $n \neq 1$.

Solution at 'Back'

$$
\tilde{h}=A(\xi-\xi_0)^{\frac{3}{1-n}},\quad n<1
$$

 \tilde{h} becomes 0 at a finite distance.

While viscosity thins as $\gamma \to \infty$ it thickens as $\gamma \to 0$, and so flow stops in a finite distance.

Finite flow domain for shear-thinning fluids Solution at 'Front' ($n = 0.8$)

Decays to zero in finite distance

Each half-cycle normalised by maximum and by wavelength

