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Rebound velocities

Chain of 25 particle, 20 rebound
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But why n−3/4? Not diffusion.
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Spreading wave which conserves energy

Slowly varying amplitude and wavelength of propagation wave of
constant form f (.)

xn = a(t) f

(
n − t

λ(t)

)

Then
ẋn ∼ −

a

λ
f ′

Kinetic energy (potential energy similar)

∑
ẋ2
n ∝ a2

λ2
λ

Conservation gives λ ∝ a2, and so ẋn ∝ a−1

Replot for different t, ẋna against (n − n1)/a2,
where n1 is last in contact, and a = xn1 .
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ẋ2
n ∝ a2

λ2
λ

Conservation gives λ ∝ a2, and so ẋn ∝ a−1
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Self similar impulse wave

t = 13.5 �, 24.5 +, 35.2 �, 45.7 ×
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Scaling for spreading wave : λ(t)?

If touching
ẍn = xn+1 − 2xn + xn−1

Second approximation for continuum limit

xtt = xnn + 1
12xnnnn

with ’numerical diffusion’.

Transform to moving coordinate N = n − t

xtt + 2xNt = 1
12xNNNN

To balance last two terms, use similarity variable N/t1/3.

Hence λ ∝ t1/3
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Results for spreading wave

wavelength λ ∝ t1/3

displacements xn = a ∝ t1/6

velocities ẋn = a/λ ∝ t−1/6

Forward moving momentum

P =
∑

ẋn ∝ (a/λ)λ ∝ t1/6

Rate of ejecting momentum backwards in ‘rocket effect’

ẋn(∞) ∆t = −Ṗ ∝ t−5/6

∆t time between particles rebounding = 1 (wave speed = 1)

Hence rebound velocities

ẋn(∞) ∝ −t−5/6 = −n−5/6
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ẋn(∞) ∝ −t−5/6 = −n−5/6



Rebound velocities
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ẋn/n
−5/6

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1/n
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Similarity solution

Try x(n, t) = t1/6f
(
ξ = n−t

t1/3

)
in xtt = xnn + 1

12xnnnn
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The 1
4 shift

Near to back of the wave ξ = ξ0

f ∼ f (ξ0)
(
1− 2

3(ξ − ξ0)3 + . . .
)

Correction for ejected velocities at t−5/6

xn(t) ∼ t1/6f (ξ) + t−1/2β(ξ − ξ0)

Ball n detaches at tn where ξ = ξ0 + δ if xn(tn) = xn+1(tn), i.e.

t−5/6
[
f (ξ0)

(
2δ2 + 2δ − 2

3

)
− β

]
= 0

and detaches with known velocity

−1
6 f (ξ0)t−5/6 = ẋn = t−5/6

[
f (ξ0)2δ2 − β

]
Hence δ = 1

4 .



Finite chain of N : number fly off and their velocities

When wave reaches end at t = N.
width of wave 1.5N1/3 and velocities 1.4N−1/6 and less.
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Questions: Answers

I How many fly off at the far end?

1.5N1/3

At what velocities? VN = 1.4N−1/6

I How many rebound? Most

At what velocities? Vn = −0.16n−5/6

Simple mechanics
Simple questions

Answers more complicated

For linear force law. Next nonlinear Hertz contacts
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Hertz contacts
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a
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Force = πa2E
δ
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=

√
2E

3(1− ν2)
R1/2δ3/2
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Impulse wave propagating down a Hertzian chain
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Rebound velocities for Hertzian chain
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Nesterenko’s (1984) solitary wave (long wave approx)

ẍ = D
[
(Dx)3/2

]
where Du = un+ 1

2
− un− 1

2
∼ ∂u

∂n
+ 1

24

∂3u

∂n3

Travelling wave solution xn(t) = f (ξ = n − V t)

V 2f ′ = f ′
3/2

+ 1
24

(
f ′

3/2
)′′

+ 1
16 f ′

1/2
f ′′′

with solution

V 2 = 4
5A1/2, f ′ = A sin4

√
2
5ξ 0 ≤ ξ ≤ π

Set A = 1.0064 for energy = 0.9937
Predict V = 0.896 Max ẋn = 0.902 [xn] = 1.875
Numerical V = 0.841 Max ẋn = 0.681 [xn] = 1.354

Wave not so long with just 4 balls
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Predict V = 0.896 Max ẋn = 0.902 [xn] = 1.875
Numerical V = 0.841 Max ẋn = 0.681 [xn] = 1.354
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Finished?



Impact by two

Two solitary waves
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Impact by three

Three solitary waves
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Impact by K

2K fly off at far end
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Impact by K

≈ 1
2K rebound at velocities > 0.01.

K = 10 �, 20 +, 30 �, 40 ×, 60 4, 80 ∗

−ẋn(∞)

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

n/K

Open question



Newton’s cradle

Final velocities of position n after impact by K

n K = 1 K = 2 K = 3 K = 4

1 -0.0711 -0.1126 -0.1397 0.0112
2 -0.0303 -0.0420 0.1996 0.8729
3 -0.0145 0.2145 0.7855 1.0145
4 0.1270 0.8004 1.0420 1.0303
5 0.9888 1.1397 1.1126 1.0711

Extra forward
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Newton’s cradle

Final velocities of position n after impact by K

n K = 1 K = 2 K = 3 K = 4

1 -0.0711 -0.1126 -0.1397 0.0112
2 -0.0303 -0.0420 0.1996 0.8729
3 -0.0145 0.2145 0.7855 1.0145
4 0.1270 0.8004 1.0420 1.0303
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Extra forward


