Fluctuations in the velocities of sedimenting particles

<u>John Hinch</u>⁽¹⁾, Élisabeth Guazzelli⁽²⁾, Laurence Bergougnoux⁽²⁾ and students⁽²⁾

⁽¹⁾ **Numerics:** DAMTP, University of Cambridge, UK.

⁽²⁾ Experiments: IUSTI - CNRS UMR 6595, Polytech' Marseille, France.

Old paradox: velocity fluctuations

Theory: depend on size L of box

$$w' = V_S \sqrt{\phi \frac{L}{a}}$$

Experiments: no such dependence

Scaling

Theory (Caflisch & Luke 1985). Dilute: pair separated by r have $w' \sim V_S \frac{a}{r}$, $p \sim n$ (constant), so averaging

$$\int {w'}^2 p \, dV \quad \text{diverges like} \quad \phi \frac{L}{a}$$

Explanation (Hinch 1988)

 $\frac{\frac{N}{2} + \sqrt{N}}{\left(\begin{array}{c} \frac{N}{2} - \sqrt{N} \\ w' \end{array} \right)}$

$$\boldsymbol{w'} = \frac{\sqrt{N}mg}{6\pi\mu L} = V_S \sqrt{\phi \frac{L}{a}}$$

Computer simulations

Solve Stokes equations in fluid and force balance on each particle.

Good to Poor:

- Boundary integral (Acrivos) Singular subtractions, iterate from last δt , adapt grid.
- FEM (Joseph) or FD or Lattice Boltzmann (Ladd) with f(x) inside particles so rigid.
- Stokesian Dynamics (Brady) pairwise approx near, with multi-particle far re-summed.
- Today's a few Fourier modes.

Numerical Method

- Point-force particles (dilute), mono-disperse.
- Stokes flow by Fourier modes:

$$\mathbf{u} = \sum_{klm} U_{klm} \left(k \sin kx \cos ly \cos mz, \dots, \ldots \right)$$

• Take number of Fourier modes \simeq number of particles.

Hence resolve flow-scales \geq inter-particle separation.

Velocity fluctuations

Different numbers of particles, height of cell, and Fourier modes.

Velocity fluctuations replotted

- Hence initially $w' = 1.1 V_S \sqrt{\phi L/a}$.
- Decays on time to fall H at w'.

Density fluctuations also decay

Velocity fluctuations are convection due to horizontal density variations.

But experiments...

... do not decay after initial adjustment.

Initial values $1.2\sqrt{\phi L/a}$?

Resolution: stratification? (Luke 2000)

- Consider blob of size ℓ , number density n.
- Number in blob $N = n\ell^3$, fluctuation \sqrt{N} .
 Variation due to stratification $\ell \frac{\partial}{\partial z} (n\ell^3)$.
- Hence stratification wins when

$$\ell > \ell_* = \left(n^{1/2} / - \frac{\partial n}{\partial z} \right)^{2/5}$$

• Then velocity fluctuation, indpt of box size if $\ell_* < L$.

$$w'_{*} = \frac{N_{*}^{1/2}mg}{6\pi\mu\ell_{*}} = V_{S}\left(\phi\frac{\ell_{*}}{a}\right)^{1/2} = V_{S}\frac{\phi^{3/5}}{\left(-a\frac{\partial\phi}{\partial z}\right)^{1/5}}$$

• But what determines $\frac{\partial \phi}{\partial z}$ in experiments?

Numerical test of stratification

• Hence $w' = 0.49 V_s \phi^{3/5} (-a \partial \phi / \partial z)^{-1/5}$

Experimental test of stratification

Measured stratification

Velocity fluctuation

Stratification only partial explanation for experiments

Stratification from diffuse front

(Mucha & Brenner 2003/4)

- Front between top of suspension and clear fluid above diffuses \rightarrow stratified region.
- Self-diffusivity $D = w'_* \ell_* = 2.75 V_s a \phi^{4/5} \left(-a \partial \phi / \partial z \right)^{-3/5}$
- Nonlinear diffusion equation

$$\frac{\partial \phi}{\partial t} - \frac{\partial (V_s \phi)}{\partial z} = \frac{\partial}{\partial z} \left(2.75 V_s a^{2/5} \phi^{4/5} \left(-\frac{\partial \phi}{\partial z} \right)^{2/5} \right)$$

Numerical value 2.75 of diffusivity from ...

Diffusivity

Diffusivity 2.75 from thickness of front

$$\delta = 3.07a\phi^{1/7} (V_s t/a)^{5/7}$$

Front: self-similar profile

Nonlinear diffusion equation predicts concentration profile in diffusing front at top of suspension

Sediment: self-similar profile

- The nonlinear diffusion equation has $c-1 \propto t^{2/3}$ over a layer $\delta \propto t^{1/3}$.
- But find sediment of constant diffusivity $D = 4.7U_s a$ $c \sim 1 + (V^2 t/D) e^{-Vx/D}$

Front spreading in experiments

• Thickness $\delta = 0.2V_s t$

Linear growth mostly due to polydisperse particles

Linear spreading in simulations?

Simulations are monodisperse

• Thickness $\delta = 1.5 \phi^{1/3} V_s t$, but was also $t^{5/7}$!

Constant fluctuations outside front

Experiments

2.5 0.025 Δ 20 x 20 x 40 cm 0 10 x 10 x 40 cm³ $4 \times 10 \times 40 \text{ cm}^3$ 0.02 2 $4 \times 4 \times 40 \text{ cm}^3$ ∇ $w^{\prime 2}$ 0.015 1.5 N/h w'/V_s 0.01 1 0.005 Win, Win, 1875, All, 10000. All, 5145, 15, 0.5 All, 1875, 15, 5 0 0.5 1.5 2 0 $t\sqrt{N/H}/H$ Win: 3 < z < 6, All: 0 < z < h. 0 1000 500 2000 0 1500 t/t_s

Simulations

Conclusions

- Stratification inhibits velocity fluctuations in spreading front.
- No effect on interior. Slow to diffuse there?
- Mixing in experiments produces some stratification? and also non-random concentration fluctuations?
- Paradox not entirely resolved