Levitation and locomotion on an air-table of plates with herringbone grooves.

John Hinch and Hélène de Maleprade

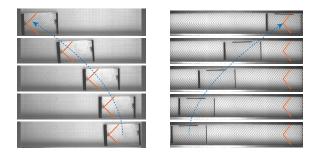
DAMTP-CMS, University of Cambridge

September 30, 2019

with Dan Soto & David Quéré in Paris, and Maximilian Schür, Steffen Hardt & Tobias Baier in Darmstadt

Experiments on an air table

Grooves on the floating body, on the table

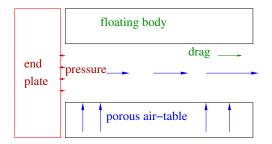


Accelerates to the left,

to the right.

Why different direction?

Left or right?



End plate attached to base (grooved table) \longrightarrow body dragged by flow to right End plate attached to top (grooved body) \longrightarrow pressure pushes to left

Pressure also levitates floating body.

Grooves: width \gg height $~\rightarrow$ 2D flow, ignore spanwise

Two more approximations later.

Boundary layer equations with p = p(x):

$$u_x + v_y = 0$$

$$\rho(u_t + uu_x + vu_y) = -p_x + \mu u_{yy}$$

BC on porous plate y = 0: u = 0 and

$$v = \frac{k}{\mu}(P_2 - p)$$
 with plate permeability $k = \frac{\pi r^4}{8\ell d^2}$

for holes of radius r, length ℓ , separation d

Nondimensionalise

Boundary layer equations with p = p(x):

$$u_x + v_y = 0$$
$$Re(u_t + uu_x + vu_y) = -Kp_x + u_{yy}$$

BC on porous plate y = 0: u = 0, v = 1 - p

$$K = \frac{\Delta p \text{ across porous plate}}{\Delta p \text{ down groove}} = \frac{8H^3\ell d^2}{\pi L^2 r^4}$$

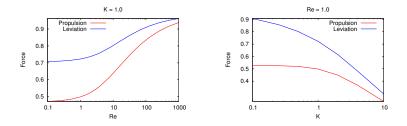
Forces:

Propulsion
$$F_H = p(0) + \int_0^1 u_y|_{y=1} dx$$
, Levitation $F_V = \int_0^1 p dx$

NB: different non-dimensionalisation, F_H smaller by area ratio H/L

Numerical solution

Integrate $v_y = -u_x$ from y = 1 to $y = 0 \rightarrow v(x, y = 0)$ Porous plate BC p(x) = 1 - v(x, 0) into momentum equation. Time step momentum to steady state.



NB: two forces (in different non-dimensionalisations) within a factor of two NB: small change with Re, but decrease at large K (short groove)

```
▶ Short groove, K \gg 1,
```

pressure drop mostly across porous plate, so $v(x,0) \approx 1$

▶ *Re* ≪ 1

▶ $Re \gg 1$

• Long groove, $K \ll 1$,

so p = 1 in groove except very near outlet

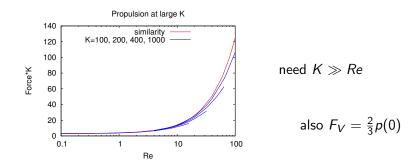
Short groove, $K \gg 1$, Re arbitrary

Most pressure drop across porous plate, so $p \sim 0$ in groove, so v(x, y = 0) = 1, hence similarity solution

$$u(x,y) = -xg'(y), \quad v(x,y) = g(y), \quad p = \frac{B}{K}(1-x^2)$$

Momentum equation then

$$Re(g'^2 - gg'') = 2B - g'''$$



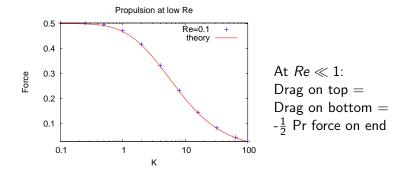
Low Reynolds number, K arbitrary

Lubrication theory

$$q = \int_0^1 u(x, y) \, dy = -\frac{K}{12} p_x, \qquad q_x = v(x, 0) = 1 - p$$

SO

$$F_{H}=rac{1}{2}(1-\mathrm{sech}\,\sqrt{12/\mathcal{K}}), \quad F_{V}=1-\sqrt{\mathcal{K}/12}\,\mathrm{tanh}\,\sqrt{12/\mathcal{K}}$$



High Reynolds number, K arbitrary

Separable solution with streamfunction

$$\psi(x,y)=-f(x)g(y).$$

Inviscid, vorticity constant along streamlines. Try

$$\omega(\psi) = k^2 \psi, \qquad \omega = -\psi_{yy}.$$

Hence

$$g(y) = \cos \frac{\pi}{2} y.$$

$$u = -f(x)g'(y), \quad v = f'(x)g(y)$$

Bernoulli integral

$$\beta^2 f^2 = p_0 - p$$
, with $\beta^2 = \pi^2 Re/8K$, $p_0 = p(0)$

High Reynolds number, inviscid

Bernoulli integral

$$\beta^2 f^2 = p_0 - p.$$

Porous plate f' = 1 - p, so

$$f(x) = rac{\sqrt{1-p_0}}{eta} an \left(eta x \sqrt{1-p_0}
ight)$$

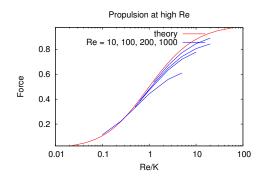
 $p_0 = p(0)$ is determined by p(1) = 0:

$$\tan^2\left(\beta\sqrt{1-p_0}\right) = \frac{p_0}{1-p_0}$$

High Reynolds number, inviscid

Finally forces

$$F_H = -p_0, \quad F_V = 1 - \sqrt{p_0}/\beta$$

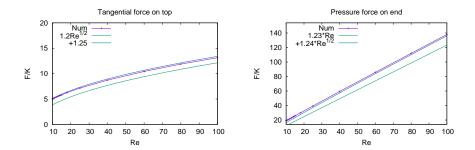


Need boundary layer corrections

Boundary layer corrections

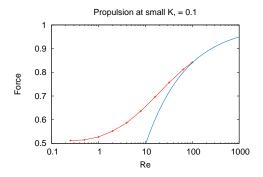
For short groves, there is a $Re^{1/2}$ similarity boundary layer

The boundary layer exerts a drag $1.2133Re^{1/2}$ on the top plate, and has a displacement thickness $1.0366Re^{-1/2}$, which leads to an enhanced pressure on the left end



Long groove, $K \ll 1$, Re arbitrary

Most of the groove is at p = 1, the pressure under the air-table. Hence pressure part of Propulsion and Levitation ~ 1 . Pressure drop and flow only near exit of groove, so tough numerics.



But frictional drag halves the Propulsion at low Re.

Double limits

	Propulsion F_H	Levitation F_V
$K, \textit{Re} \ll 1$	0.5	$1-\sqrt{K/12}$
$K \ll 1 \ll Re$	1	$1-\sqrt{8K/\pi^2Re}$
$\textit{Re} \ll 1 \ll \textit{K}$	3/ <i>K</i>	4/ <i>K</i>
$1 \ll \textit{Re} \ll \textit{K}$	$\pi^2 Re/8K$	$\pi^2 Re/12K$
$1 \ll K \ll Re$	1-2K/Re	$1-\sqrt{8{\it K}/\pi^2{\it Re}}$

At $Re \gg 1$ and $K \ll 1$, uniform levitation pressure = propulsion pressure, i.e. $F_H = F_V$

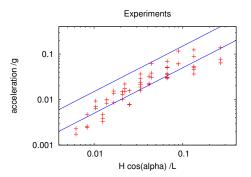
At $Re \ll 1$, frictional drag reduces F_H by 50%. At $K \gg 1$, pressure is parabolic, reduces F_V by 2/3.

Hence $F_H/F_V = 0.5$ to 1.5 (different non-dimensionalisations)

Experiments

Reinstating the different dimensional factors, and resolving force along direction that body moves, predict

 $\mathsf{Propulsion/weight} = (0.5 \text{ to } 1.5) h \cos \alpha / \ell$



Grooves 5 heights & 4 lengths, Plates 3 thickness, ($K = 0.15 \rightarrow 2800, Re = 1 \rightarrow 200$) $a = 0.02 \rightarrow 1.4 \,\mathrm{m/s^2}$