Explaining the flow of elastic liquids

Penner Lecture, Winter 2006

John Hinch

CMS-DAMTP, University of Cambridge

Complex fluids

- What & where?
- Why & when?
- Which today?
- 20 years to review

More than Viscous + **Elastic**

Viscous:

Bernoulli, lift, added mass, waves, boundary layers, stability, turbulence

Elastic:

structures, FE, waves, crack, composites

Visco-elastic is more

Not halfway between Viscous & Elastic – strange flows to explain

Outline

- Observations to explain
- How well does Oldroyd-B do?
 - half correct
- The FENE modification
 - anisotropy & stress boundary layers
- Conclusions the reasons why

Flows to explain

- A Contraction flow large upstream vorticies, large pressure drop
- B Flow past a sphere long wake, increased drag
- C M1 project on extensional viscosity large stresses but confusion for value of viscosity
- D Capillary squeezing of a liquid filament very slow to break

A. Contraction flow

large upstream vortex

large pressure drops

Cartalos & Piau 1992 JNNFM 92

B. Flow past a sphere

long wake

Arigo, Rajagopalan, Shapley & McKinley
1995 JNNFM

increased drag

Tirtaatmadja, Uhlherr & Sridhar 1990 JNNFM

also negative wakes!

C. M1 project

Keiller 1992 JNNFM

no simple extensional viscosity

Flows to explain

- A Contraction flow large upstream vorticies, large pressure drop
- B Flow past a sphere long wake, increased drag
- C M1 project on extensional viscosity large stresses but confusion for value of viscosity
- D Capillary squeezing of a liquid filament very slow to break

... and more.

Governing equations

$$\nabla \cdot \mathbf{u} = 0$$

$$\text{Momentum} \quad \rho \frac{D\mathbf{u}}{Dt} = \nabla \cdot \sigma$$

Constitutive $\sigma(\nabla \mathbf{u})$ Not known

$$\sigma(\nabla \mathbf{u})$$

Start with simplest

viscous part + elastic part, elastic part can relax.

What can be learnt from simplest – useful?

– any behaviour independent of details of model?

Oldroyd-B model fluid simplest viscous + elastic

$$\sigma = -p {f I} + 2 \mu_0 {f E} + G {f A}$$
 stress viscous elastic μ_0 viscosity G elastic modulus

with microstructure A

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A} \qquad -\frac{1}{\tau} (\mathbf{A} - \mathbf{I})$$
 deform with fluid relaxes
$$\tau \text{ relaxation time}$$

Deforming with the fluid

Fluid line element $\delta \ell$ deforms as

$$\frac{d\delta\ell}{dt} = \delta\ell \cdot \nabla \mathbf{u}$$

Hence the second order tensor (stress)

$$\mathbf{A} = \delta \ell \, \delta \ell$$

will deform as

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A}$$

Oldroyd-B model fluid simplest viscous + elastic

$$\sigma = -p {f I} + 2 \mu_0 {f E} + G {f A}$$
 stress viscous elastic μ_0 viscosity G elastic modulus

with A microstructure.

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A} \qquad -\frac{1}{\tau} (\mathbf{A} - \mathbf{I})$$
 deform with fluid relaxes
$$\tau \text{ relaxation time}$$

Does this model work/fail?

Deborah/Weissenberg number

Fluid relaxation time τ gives nondimensional group

$$De = \frac{U\tau}{L} = \frac{\text{fluid time }\tau}{\text{flow time }L/U}$$

 $De \ll 1$: fluid relaxed \Longrightarrow liquid like

 $De \gg 1$: little relaxed \implies solid like

Investigating Oldroyd-B

1. Steady & weak
$$\frac{D}{Dt}$$
, $\nabla \mathbf{u} \ll 1/\tau$

2. Unsteady & weak
$$\nabla \mathbf{u} \ll 1/\tau$$

- linear viscoelasticity
- 3. Slightly nonlinear $\nabla \mathbf{u} \lesssim 1/\tau$
 - 2nd order fluid
- 4. Very Fast $\nabla \mathbf{u} \gg 1/\tau$
- 5. Strongly elastic $2\mu_0 E \ll GA$

1. Steady & weak $\frac{D}{D+}$, $\nabla \mathbf{u} \ll 1/\tau$ ($De \ll 1$)

$$\frac{D}{Dt}$$
, $\nabla \mathbf{u} \ll 1/\tau \ (De \ll 1)$

Microstructure

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A} - \frac{1}{\tau} \left(\mathbf{A} - \mathbf{I} \right)$$

$$\therefore \mathbf{A} \sim \mathbf{I} + 2\mathbf{E}\tau$$

i.e. A = I is deformed by flow E until $t = \tau$, when it relaxes/forgets.

Stress

$$\sigma = -p\mathbf{I} + 2\mu_0\mathbf{E} + G\mathbf{A}$$

$$= -p\mathbf{I} + 2(\mu_0 + G\tau)\mathbf{E}$$
effective viscosity

So Newtonian. Use $\mu_0 + G\tau$ is comparisons of Δp and Drag.

2. Unsteady & weak $\nabla u \ll 1/\tau$

$$\frac{D\mathbf{A}}{Dt} \approx 2E + \frac{1}{\tau} \left(\mathbf{A} - \mathbf{I} \right)$$

Takes τ to build up to steady state

Stress relaxation - in all CE

Startup

Instantaneous viscous stress $\mu_0 \gamma$.

Deformation at rate γ for memory time τ gives deformation $\gamma\tau$.

So elastic stress $G\gamma\tau$.

Hence steady state viscosity $\mu_0 + G\tau$, but only after time τ .

Stress relaxation is a special property of non-Newtonian fluids, which is not in elastic solids nor viscous liquids

NB steady flows are unsteady Lagrangian.

A. Contraction flow Lagrangian unsteady

Numerical Oldroyd-B

Debbaut, Marchal & Crochet 1988 JNNFM

Coates, Armstrong & Brown 1992 JNNFM

 Δp scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$.

But lower drop by early-time viscosity μ_0 if flow fast

... contraction flow

Experiments

Cartalos & Piau 1992 JNNFM 92

Experiments have a tiny decrease in pressure drop!

Oldroyd-B has no big increase is Δp , and no big upstream vorticies

B. Flow past a sphere Lagrangian unsteady

Numerical Oldroyd-B

Yurun & Crochet 1995 JNNFM

Drag scaled by Stokes using steady-state viscosity $\mu_0 + G\tau$. But lower drag by early-time viscosity μ_0 if flow fast

...flow past a sphere

Experiments

Tirtaatmadja, Uhlherr & Sridhar 1990 JNNFM

Experiments have a tiny decrease in drag!

Oldroyd-B has no big increase in drag, and no big wake

... and negative wakes

Experiment

Bisgaard 1983 JNNFM

Driven by unrelaxed elastic stress in wake.

3. Slightly nonlinear

Shear stress = $G \times (\text{rate} = \gamma) \times (\text{memory time} = \tau)$ Normal stress (tension in streamlines) = shear stress $\times \gamma \tau$.

Tension in streamlines

- Rod climbing
- Secondary circulation
- Migration into chains
- Migration to centre of pipe
- Falling rods align with gravity
- Stabilisation of jets
- Co-extrusion instability
- Taylor-Couette instability

Rod climbing

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 62

Tension in streamlines \longrightarrow hoop stress \longrightarrow squeeze fluid in & up.

Secondary flow

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 70

Tension in streamlines \longrightarrow hoop stress \longrightarrow squeeze fluid in.

Non-Newtonian effects opposite sign to inertial

Migration into chains

Bird, Armstrong & Hassager 1987, Vol 1 (2nd ed) pg 87

Tension in streamlines —→ hoop stress —→ squeeze particles together

Stabilisation of jets

Newtonian Jet

Non-Newtonian Jet (200ppm PEO)

Hoyt & Taylor 1977 JFM

Tension in streamlines in surface shear layer

Co-extrusion instability

If core less elastic, then jump in tension in streamlines Jump OK is interface unperturbed

Hinch, Harris & Rallison 1992 JNNFM

Tension in streamlines

- Rod climbing
- Secondary circulation
- Migration into chains
- Migration to centre of pipe
- Falling rods align with gravity
- Stabilisation of jets
- Co-extrusion instability
- Taylor-Couette instability

4. Very Fast, $De \gg 1$

$$\frac{D\mathbf{A}}{Dt} = \mathbf{A} \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \mathbf{A} - \frac{1}{\tau} \left(\mathbf{A} - \mathbf{I} \right)$$

Fast: no time to relax: deforms where speeds up (steady flow)

$$\mathbf{A} = g(\psi)\mathbf{u}\mathbf{u}$$
 tensioned streamlines again

g from matching to slower (relaxing) region

Momentum $\nabla \cdot \sigma = 0$, purely elastic $\sigma = -p\mathbf{I} + G\mathbf{A}$

$$0 = -\nabla p + Gg^{1/2}\mathbf{u} \cdot \nabla g^{1/2}\mathbf{u}$$

Euler equation

... very fast

$$0 = -\nabla p + Gg^{1/2}\mathbf{u} \cdot \nabla g^{1/2}\mathbf{u}$$

Anti-Bernoulli

$$p - \frac{1}{2}Ggu^2 = \mathbf{const}$$

Dollet, Aubouy & Graner 2005 PRL

Hence non-Newtonian effects opposite sign to inertial

... very fast

Potential flows $g^{1/2}\mathbf{u} = \nabla \phi$

Flow around sharp 270° corner:

Hinch 1995 JNNFM

$$\phi = r^{2/3} \cos \frac{2}{3}\theta,$$

$$\sigma \propto r^{-2/3}$$

$$\psi = r^{14/9} \sin^{7/3} \frac{2}{3}\theta$$

Alves, Oliviera & Pinho 2003 JNNFM

D. Capillary squeezing a liquid filament

also 5. Strongly Elastic

Mass
$$\dot{a}=-\frac{1}{2}Ea$$
 Momentum
$$\frac{\chi}{a}=3\mu_0E+G(A_{zz}-A_{rr})$$
 Microstructure
$$\dot{A}_{zz}=2EA_{zz}-\frac{1}{\tau}(A_{zz}-1)$$
 Solution
$$a(t)=a(0)e^{-t/3\tau}$$

Need slow $E = 1/3\tau$ to stop A_{zz} relaxing from χ/Ga

... capillary squeezing

Oldroyd-B
$$a(t) = a(0)e^{-t/3\tau}$$

does not break

Experiments S1 fluid

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM

but filament breaks in experiments

C. M1 project

no simple extensional viscosity

- 1. Open syphon
- 2. Spin line
- 3. Contraction
- 4. Opposing Jet
- 5. Falling drop
- 6. Falling bob
- 7. Contraction
- 8. Contraction

Keiller 1992 JNNFM

really elastic responses

...M1 project

Fit data with Oldroyd-B: $\mu_0 = 5$, G = 3.5, $\tau = 0.3$ from shear

2. Spin line

Keiller 1992 JNNFM

1. Open syphon Binding 1990

7

Oliver 1992

5. Falling drop Jones 1990

6. Falling bob Matta 1990

Oldroyd B: Successes & Failures

Simplest viscosity μ_0 + elasticity G + relaxation τ

- C. M1 Project
- 3. Tension in streamlines
- A. Contraction: Δp small decrease, no big increase, no large vorticies
- B. Sphere: Drag small decrease, no increase, no long wake
- D. Capillary squeezing: long time-scale, no break

Also difficult numerically at $\frac{U\tau}{L}>1$

Need more physics in constitutive equation

Disaster in Oldroyd-B

Steady extensional flow

$$\dot{A}=2EA-rac{1}{ au}(A-1),$$
 solution: $A=e^{(2E-rac{1}{ au})t}$

$$A = e^{(2E - \frac{1}{\tau})t}$$

Microstructure deforms without limit if $E > \frac{1}{2\tau}$

Need to limit deformation of microstructure

FENE modification

Finite Extension Nonlinear Elasticity

$$\frac{DA}{Dt} = A \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot A - \frac{\mathbf{f}}{\tau} (A - \mathbf{I})$$

$$\sigma = -p\mathbf{I} + 2\mu_0 E + G\mathbf{f}A$$

$$f = rac{L^2}{L^2 - \operatorname{trace} A}$$
 keeps $A < L^2$

...FENE

Large extensional viscosity $\mu_0 + G\tau L^2$, but small shear viscosity μ_0

D. FENE capillary squeezing

Filament breaks in with FENE L=20

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM

B. FENE flow past a sphere

FENE

Chilcott & Rallison 1988 JNNFM

Experiments M1

Tirtaatmadja, Uhlherr & Sridhar 1990 JNNFM

FENE gives drag increase

... FENE flow past sphere

FENE drag increase from long wake of high stress

Chilcott & Rallison 1988 JNNFM

Cressely & Hocquart 1980 Opt Act

"Birefringent strand"

... birefringent strands

Boundary layers of high stress: μ_{ext} in wake, μ_0 elsewhere.

Harlen, Rallison & Chilcott 1990 JNNFM

... birefringent strands

Can apply to all flows with stagnation points, e.g.

Thy. Harlen, Rallison & Chilcott 1990 JNNFM Exp. Cressely & Hocquart 198n Opt Act

Also cusps at rear stagnation point of bubbles.

A. FENE contraction flow

FENE L=5

Szabo, Rallison & Hinch 1997 JNNFM

Experiments

Cartalos & Piau 1992 JNNFM

FENE gives increase in pressure drop

... FENE contraction flow

Increase in pressure drop from long upstream vortex

Experiments

FENE L=5

Szabo, Rallison & Hinch 1997 JNNFM

Cartalos & Piau 1992 JNNFM

...a champagne-glass model

Bowl: point sink flow, full stretch if $De > L^{3/2}$.

Stem: balance
$$\mu_{\text{ext}} \frac{\partial^2 u}{\partial r^2} = \mu_{\text{shear}} \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

if small cone angle
$$\Delta \theta = \sqrt{\frac{\mu_{\rm ext}}{\mu_{\rm shear}}}$$

Flow anisotropy from material anisotropy: $\mu_{\rm ext} \gg \mu_{\rm shear}$

Conclusions for FENE modification

- A. Contraction: Δp increases, large upstream vortex
- B. Sphere: drag increase, long wake
- D. Capillary squeezing: filament breaks
- Numerically safe

But sometimes need small L to fit experiments.

Understanding flow of elastic liquids?

In Oldroyd B

- Tension in streamlines
- Stress relaxation transients see $\mu_0 < \mu_{\rm steady}$
- Flows controlled by relaxation E to stop relaxation, very slow

In FENE – deformation of microstructure limited

- μ_{ext} large increase Δp & drag
- $\mu_{\rm ext} \gg \mu_{\rm shear}$ flow anisotropy

independent of details of model?

More than viscous + elastic