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Complex fluids

» What & where?
® Why & when?
o Which today?

# 20 years to review



More than Viscous -+ Elastic

#» \iscous:
Bernoulli, lift, added mass, waves, boundary layers,
stability, turbulence

#» Elastic:
structures, FE, waves, crack, composites

® Visco-elastic is more

Not halfway between Viscous & Elastic — strange flows
to explain



o

Outline

Observations to explain
How well does Oldroyd-B do?

The FENE modification

Conclusions — the reasons why



Flows to explain

Contraction flow

large upstream vorticies, large pressure drop
Flow past a sphere

long wake, increased drag
M1 project on extensional viscosity

large stresses but confusion for value of viscosity
Capillary squeezing of a liquid filament

very slow to break



A. Contraction flow

large upstream vortex
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B. Flow past a sphere

long wake
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also negative wakes!

iIncreased drag
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C. M1 project
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no simple extensional viscosity



Flows to explain

A Contraction flow
large upstream vorticies, large pressure drop
B Flow past a sphere
long wake, increased drag
C M1 project on extensional viscosity
large stresses but confusion for value of viscosity
D Capillary squeezing of a liquid filament
very slow to break

...and more.



Governing equations

Mass V-u=0
Du
Momentum p—=V_
omentu Py V.o
Constitutive o(Vu) Not known

Start with simplest
— viscous part + elastic part, elastic part can relax.

What can be learnt from simplest — useful?
— any behaviour independent of details of model?



Oldroyd-B model fluid

o = -—pl +210E +G
stress VISCOUS elastic

1o Viscosity G elastic modulus

with microstructure

D T 1
_— = . v v . _— —I
Dt urve 7'( )

deform with fluid relaxes

T relaxation time



Deforming with the fluid

Fluid line element o/ deforms as

d

v

Hence the second order tensor (stress)

will deform as

D
-7 = -Vu+ Vu' -



Oldroyd-B model fluid

o = —pl  +2E +G
stress ViScous elastic

1o vViscosity G elastic modulus

with A microstructure.

D . 1
—_— = . . _ —I
D Vu + Vu T( )

deform with fluid relaxes

T relaxation time

Does this model work/fail?



Deborah/Weissenberg number

Fluid relaxation time = gives nondimensional group

De — Ur  fluid time 7
“T L " flowtime L/U

De < 1: fluid relaxed = liquid like

De > 1: little relaxed — solid like



Investigating Oldroyd-B

Steady & weak %, Vu<1/7

Unsteady & weak Vu < 1/7
Slightly nonlinear Vu<1/7

Very Fast Vu>1/7

Strongly elastic 2upE < GA



1. Steady & weak  (De < 1)

Microstructure

D - 1
T _ A A — (A =1
Dt Vu -+ Vu T ( )
~ 1+ 2E7
i.e. A =1is deformed by flow E until ¢ = 7, when it
relaxes/forgets.
Stress
o = —pl+ 2upE+ G

= —pI+ 2(puo + G7)E

effective viscosity

So Newtonian. Use 1o + G is comparisons of Ap and Drag.



2. Unsteady & weak

Imposed shear

Stress o

Takes 7 to build up to steady state
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Stress relaxation

Startup

Instantaneous viscous stress o7 .

Deformation at rate v for memory time r gives
deformation ~7.

So elastic stress Gyr.

Hence steady state viscosity 1o + G, but only after time .

Stress relaxation is a special property of non-Newtonian
fluids, which is not in elastic solids nor viscous liquids

NB steady flows are unsteady Lagrangian.



A. Contraction flow Lagrangian unsteady

Debbaut, Marchal &
Crochet 1988 JNNFM

o
AP

Stokes Coates, Armstrong &

Brown 1992 JNNFM

Ap scaled by Stokes using steady-state viscosity g + G7.

But lower drop by early-time viscosity 1 if flow fast
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... contraction flow

Experiments
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De=Ut/L
Experiments have a tiny decrease in pressure drop!

Oldroyd-B has no big increase is Ap, and no big upstream
vorticies



B. Flow paSt d Sphere Lagrangian unsteady

Numerical Oldroyd-B

present paper ——
58 Crochet-Legat o
Lunsmannetal. +

56 -

54 r

Drag x .| | | Yurun & Crochet 1995
Stokes _ | JNNEM

(0 0.5 | 155 2 2.5
We

De=Ut/L

Drag scaled by Stokes using steady-state viscosity 1o + G.
But lower drag by early-time viscosity 1 if flow fast
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...Hlow past a sphere

Experiments
1.4
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Experiments have a tiny decrease in drag!

Oldroyd-B has no big increase in drag, and no big wake



... and negative wakes

Experiment

V(mmy/s)
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Driven by unrelaxed elastic stress in wake.



3. Slightly nonlinear

shear ~ strain rotation
? \._/
RN
/“’\‘\ /“"\
Y Y
microstructure shear stress normal stress

Shear stress = G x (rate = ) x (memory time = )
Normal stress (tension in streamlines) = shear stress x~r.
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Tension in streamlines

Rod climbing

Secondary circulation
Migration into chains
Migration to centre of pipe
Falling rods align with gravity
Stabilisation of jets
Co-extrusion instability
Taylor-Couette instability



Rod climbing

Bird, Armstrong & Has-
sager 1987, Vol 1 (2nd
ed) pg 62

Tension in streamlines — hoop stress
— squeeze fluid in & up.
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Secondary flow

Bird, Armstrong & Has-
sager 1987, Vol 1 (2nd
ed) pg 70

Tension in streamlines — hoop stress
— squeeze fluid in.

Non-Newtonian effects opposite sign to inertial
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Migration into chains
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Tension in streamlines — hoop stress
— sgueeze particles together



Stabilisation of jets

Newtonian Jet

Tension in streamlines in surface shear layer



Co-extrusion instability

If core less elastic, then jump in tension
Jump OK is interface unperturbed

In streamlines

annulus

- force flow

.4_//’_—\

perturbed interface
core

annulus

]
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Tension in streamlines

Rod climbing

Secondary circulation
Migration into chains
Migration to centre of pipe
Falling rods align with gravity
Stabilisation of jets
Co-extrusion instability
Taylor-Couette instability



4. Very Fast, De > 1

D T
Tt— -Vu—I—Vu . —7_

Fast: no time to relax: deforms where speeds up (steady
flow)

— g(¢)ll11 tensioned streamlines again

g from matching to slower (relaxing) region

Momentum V - o = 0, purely elastic 0 = —pl + G

0=—-Vp+ Ggl/zu - Vgl/zu

Euler equation



...very fast

0=—-Vp+ Ggl/zu . Vgl/zu

Anti-Bernoulli

p — 3Ggu® = const

Hence non-Newtonian effects opposite sign to inertial



... very fast

Potential flows ¢'/?2u = V¢

Flow around sharp 270° corner:
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D. Capillary squeezing a liquid filament

T Surface tension y .
radiusg a(?) strain rate E(t)

Mass a=—zFa

Momentum % — + G(A,, )

Microstructure A,, =2FA,, — —(A,.—1)

Solution  a(t) = a(0)e /3"

Need slow £ = 1/37 to stop A., relaxing from \/Ga



... capillary squeezing

Oldroyd-B  a(t) = a(0)e~*/3"  does not break

Experiments S1 fluid

Exp: Liang & Mackley 1994 JNNFM
Thy: Entov & Hinch 1997 JNNFM

but filament breaks in experiments
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C. M1 project

no simple extensional viscosity
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... M1 project

Fit data with Oldroyd-B: 1o = 5, G = 3.5, 7 = 0.3 from shear
Keiller 1992 JNNFM

1. Open syphon  Binding 1990 2. Spin line  Oliver 1992
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Oldroyd B: Successes & Failures

Simplest viscosity g + elasticity G + relaxation 7

C. M1 Project

3. Tension in streamlines

A. Contraction: Ap small decrease, no big increase, no
large vorticies

B. Sphere: Drag small decrease, no increase, no long wake
D. Capillary squeezing: long time-scale, no break

Also difficult numerically at %~ > 1

Need more physics in constitutive equation
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Disaster in Oldroyd-B

Steady extensional flow

/

. 1 . .
A=2FA—-(A—1), solution:  A=eRE-7)
T

Microstructure deforms without limit if £ > 5~

Need to limit deformation of microstructure



FENE modification

Finite Extension Nonlinear Elasticity

DA .

o=—pl+2ugl +GfA

LQ
— keeps A < L?
! L2 —trace A P <




... FENE

E

Large extensional viscosity ;o + G7L?, but small shear
VISCOSIty 1



D. FENE capillary squeezing

Filament breaks in with FENE L = 20

Exp: Liang & Mackley 1994 JNNFM
Thy: Entov & Hinch 1997 JNNFM
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B. FENE flow past a sphere

CENE Experiments M1
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FENE gives drag increase
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... FENE flow past sphere

FENE drag increase from long wake of high stress

Chilcott & Rallison 1988 JNNFM

Cressely & Hocquart 1980 Opt Act

“Birefringent strand”
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... birefringent strands

Boundary layers of high stress: uq In wake, ug elsewhere.
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... birefringent strands

Can apply to all flows with stagnation points, e.g.

N
N
N

Also cusps at rear stagnation point of bubbles.



A. FENE contraction flow

FENE L =5 Experiments
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FENE gives increase in pressure drop
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... FENE contraction flow

Increase in pressure drop from long upstream vortex

Experiments

FENE L =5

Szabo, Rallison & Hinch 1997 JNNFM
Cartalos & Piau 1992 JNNFM
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...a champagne-glass model

bowl Q
~ N
— stem
e

Bowl: point sink flow, full stretch if De > L3/2.

02u B 1 9%u
W — Mshearﬁw

if small cone angle A = F o

Flow anisotropy from material anisotropy: jiext > lshear

Stem: balance jiext



Conclusions for FENE modification

A. Contraction: Ap increases, large upstream vortex
B. Sphere: drag increase, long wake

D. Capillary squeezing: filament breaks

© o o @

Numerically safe

But sometimes need small L to fit experiments.



Understanding flow of elastic liquids?

In Oldroyd B
# Tension in streamlines
® Stress relaxation — transients see 1o < figteady

# Flows controlled by relaxation — E' to stop relaxation,
very slow

In FENE — deformation of microstructure limited
® [t large —increase Ap & drag

O loxt > lshear — [IOW @nisotropy

More than viscous + elastic
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