Mathematical Tripos Part IA and the control of the Lent Term 2008

Vector Calculus, Examples sheet 1 Prof E.J. Hinch

1 The curve given parametrically by $(a \cos^3 t, a \sin^3 t)$ with $0 \le t \le 2\pi$ is called an Astroid. Find its length.

2 The curve defined by $y^2 = x^3$ is called *Neile's parabola*, named after William Neil (1637-1670). Find the length of the segment of Neile's parabola with $0 \le x \le 4$.

3 Find the minimum and maximum curvature of the ellipse $x^2/a^2 + y^2/b^2 = 1$.

4 A circular helix is given by

$$
\mathbf{x} = (a\cos t, a\sin t, ct).
$$

Calculate the tangent **t**, curvature κ , principal normal **n**, binormal **b**, and torsion τ .

5 Evaluate explicitly each of the line integrals

$$
\int (x \, dx + y \, dy + z \, dz), \quad \int (y \, dx + x \, dy + dz), \quad \int (y \, dx - x \, dy + e^{x+y} \, dz),
$$

along (i) the straight line path joining the origin to $x = y = z = 1$, and (ii) the parabolic path given parametrically by $x = t$, $y = t$, $z = t^2$ with $0 \le t \le 1$.

For which of these integrals do the two paths give the same results, and why?

6 The vector force fields **F** and **G** are defined by $\mathbf{F} = (3x^2yz^2, 2x^3yz, x^3z^2)$ and **G** = $(3x^2y^2z, 2x^3yz, x^3y^2)$ respectively. (i) Compute the line integrals $\int \mathbf{F} \cdot d\mathbf{x}$ and $\int \mathbf{G} \cdot d\mathbf{x}$ along the straight line from $(0,0,0)$ to $(1,1,1)$. (ii) Compute the line integrals $\int \mathbf{F} \cdot d\mathbf{x}$ and $\int \mathbf{G} \cdot d\mathbf{x}$ along the path $\mathbf{x}(t) = (t, t^n, t^2)$ from $(0, 0, 0)$ to $(1, 1, 1)$.

7 The closed curve C in the $z = 0$ plane consists of the arc of the parabola $y^2 = 4ax$ $(a > 0)$ between the points $(a, \pm 2a)$ and the straight line joining $(a, \mp 2a)$. The area enclosed by C is A . Show, by calculating the integrals explicitly, that

$$
\int_C (x^2 y \, dx + xy^2 \, dy) = \int_A (y^2 - x^2) \, dA = \frac{104}{105} a^4.
$$

where C is described anticlockwise.

8 Use the substitution $x = r \cos \theta$, $y = \frac{1}{2}$ $\frac{1}{2}r\sin\theta$, to evaluate

$$
\int_A \frac{x^2}{x^2 + 4y^2} \, \mathrm{d}A\,,
$$

where A is the region between the two ellipses $x^2 + 4y^2 = 1$, $x^2 + 4y^2 = 4$.

9 The region A is bounded by the segments $x = 0, 0 \le y \le 1$; $y = 0, 0 \le x \le 1$; $y = 1$, $0 \leq x \leq \frac{3}{4}$ $\frac{3}{4}$, and by an arc of the parabola $y^2 = 4(1-x)$. Consider a mapping into the (x, y) plane from the (u, v) plane defined by the transformation $x = u^2 - v^2$, $y = 2uv$. Sketch A and also the two regions in the (u, v) plane which are mapped into it. Hence evaluate

$$
\int_A \frac{\mathrm{d}A}{(x^2 + y^2)^{1/2}} \, .
$$

10 Show without changing the order of integration that

$$
\int_0^1 \left[\int_0^1 \frac{x - y}{(x + y)^3} dy \right] dx = \frac{1}{2} \quad \text{and} \quad \int_0^1 \left[\int_0^1 \frac{x - y}{(x + y)^3} dx \right] dy = -\frac{1}{2}.
$$

Comment on these results.

11 For the tetrahedron V with corners at $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$, evaluate the integral

$$
\int_V x \, \mathrm{d}V.
$$

Hence find the centre of volume $\frac{1}{V} \int_V \mathbf{x} dV$.

12 A solid cone is bounded by the surface $\theta = \alpha$ in spherical polar coordinates and the surface $z = a$. Its mass density is $\rho_0 \cos \theta$. By evaluating a volume integral find the mass of the cone.

I would appreciate any comments and corrections from students and supervisors. Please e-mail ejh1@cam.ac.uk.