Mathematical Tripos Part IA

Vector Calculus, Examples sheet 4

Lent Term 2008 Prof E.J. Hinch

1 If $\mathbf{u}(\mathbf{x})$ is a vector field, show that $\partial u_i / \partial x_j$ transforms as a second-rank tensor. If $\sigma(\mathbf{x})$ is a second-rank tensor field, show that $\partial \sigma_{ij} / \partial x_j$ transforms as a vector.

2 Decompose

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{array}\right)$$

into the form

$$A\mathbf{x} = \alpha \mathbf{x} + \omega \times \mathbf{x} + B\mathbf{x},$$

where α is a scalar, ω a vector and B a traceless symmetric second-rank tensor.

3 The electrical conductivity tensor σ_{ij} has components

$$\sigma_{ij} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Find the direction(s) (i) along which no current flows and (ii) the current is largest.

4 For any second-rank tensor T_{ij} , prove using the transformation law for components that the quantities

$$\alpha = T_{ii}, \quad \beta = T_{ij}T_{ji} \quad \text{and} \quad \gamma = T_{ij}T_{jk}T_{ki}$$

are the same in all bases.

If T_{ij} is a symmetric tensor, express these invariants in terms of the eigenvalues. Deduce that the cubic equation for the eigenvalues is

$$\lambda^3 - \alpha \lambda^2 + \frac{1}{2}(\alpha^2 - \beta)\lambda - \frac{1}{6}(\alpha^3 - 3\alpha\beta + 2\gamma) = 0.$$

5 Evaluate the following integrals over the whole of R^3 for positive γ and $r^2 = x_p x_p$:

(i)
$$\int r^{-3}e^{-\gamma r^2}x_ix_j \,\mathrm{d}V,$$
 (ii) $\int r^{-5}e^{-\gamma r^2}x_ix_jx_k \,\mathrm{d}V$

6 A body has the symmetry that its shape is unchanged by arbitrary rotations around a single axis, e_3 . Show that any second-rank tensor calculated for the body will take the form

$$\left(\begin{array}{ccc} \alpha & \omega & 0 \\ -\omega & \alpha & 0 \\ 0 & 0 & \beta \end{array}\right).$$

7 A body has the symmetry that its shape in unchanged by rotations of 180° about three perpendicular axes which form a basis *B*. Show that any second-rank tensor calculated for the body will be diagonal in *B*, although the diagonal elements need not be equal.

Evaluate the moments of inertia tensor of a cuboid with sides of length 2a, 2b and 2c about the centre of the cuboid.

8 In the piezoelectric effect, an electric polarisation vector P_i is induced by a mechanical stress described by a second order symmetric tensor σ_{jk} . There is a linear relation between them of the form

$$P_i = d_{ijk}\sigma_{jk},$$

where d_{ijk} is a third-rank tensor which depends only on the material. Show that P_i can be non-zero only in an anisotropic material.

9 In linear elasticity, the symmetric second-rank stress tensor σ_{ij} is linear in the symmetric second-rank strain tensor e_{kl} . Show that in an isotropic material

$$\sigma_{ij} = \lambda \delta_{ij} e_{kk} + 2\mu e_{ij},$$

with two material constants λ and μ . You may quote the form of the general isotropic fourth-rank tensor.] Solve the above equation to find an expression for e_{ij} in terms of σ_{kl} . Show that the eigenvectors of σ are parallel to the eigenvectors of e.

10^{*} Plastic flow of a granular medium occurs when the magnitude of the tangential force **F** exceeds the normal force **N** multiplied by the Coulombic friction coefficient μ . At a (symmetric second-rank tensor) stress σ , the internal tangential and normal forces acting across a surface with unit normal **n** are calculated as

$$|\mathbf{N}| = n_i \sigma_{ij} n_j$$
, and $|\mathbf{F}| = t_i \sigma_{ij} n_j$,

where **t** is orthogonal to **n**. Consider only the two-dimensional case and take σ in its principal basis, i.e.

$$\sigma = \left(\begin{array}{cc} \sigma_1 & 0\\ 0 & \sigma_2 \end{array}\right).$$

Use $\mathbf{n} = (\cos \theta, \sin \theta)$ and $\mathbf{t} = (-\sin \theta, \cos \theta)$. Find the maximum value of $|\mathbf{F}|/|\mathbf{N}|$ as θ varies. Deduce there will be plastic flow if

$$|\sigma_1 - \sigma_2| > \frac{\mu}{\sqrt{1 + \mu^2}} |\sigma_1 + \sigma_2|.$$

I would appreciate any comments and corrections from students and supervisors. Please e-mail ejh1@cam.ac.uk.