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Conservation of mass and of momentum give two equations relating the density
ρ(x, t) and the velocity u(x, t). The latter equation introduces another variable, the
pressure p(x, t). In a compressible fluid (gas or liquid), an equation of state gives a
relation between the pressure and density, which unfortunately introduces a further
variable, temperature T (x, t). Hence we need a diversion into thermodynamics. The
only result that we need from this diversion is the relationship between pressure and
density when entropy is constant
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,

1.3 *A little thermodynamics*

The equation of state is in general a relation F (p, ρ, T ) = 0. For a perfect gas
(dilute, spacing between molecules is many molecules, air is 10) it is

p = ρRT,

with gas constant R = 8314 m2s−2K−1(mole wt)−1, mole wt for dry air is 29.

0th law – there exists temperature T
After several collisions with other molecules, the velocity of a molecule becomes

randomised and the gas attains thermal equilibrium characterised by a temperature
T. The time for air is 10−9 s and for water 10−12 s. Reversible change means slow
compared with above times, so that remain near thermal equilibrium.

1st law – energy is conserved if count all forms
We consider a unit mass of gas. Then specific volume (volume per unit mass) is

V = 1/ρ, and it has (specific) internal energy E(ρ, T ) from kinetic energy of thermal
motion of molecules and possibly potential energy of excited vibrational modes; NB
depends strongly on temperature and on density now and not past values.

Mechanical work done on simple gas against pressure is −p dV (positive work if
compress, dV < 0). Heat energy input (by molecular conduction) δQ. Then 1st law:

dE = δQ − p dV.

Specific heats
Heat input to increase temperature of unit mass by 1 K. Two varieties – inputting

heat while keeping volume constant, or while keeping pressure constant
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,
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p

.

Warning: thermodynamics is full of partial derivatives with different things being held
constant. Be careful!
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2nd law – chaos increases
Experimentally it is found that the total heat Q is not a well defined function of ρ

and T , but depends on path taken to move between two ρ and T values. Instead there
is another quantity entropy S(ρ, T ) which is well-defined independent of path

δQ = TdS.

For an isolated system, entropy must increase Ṡ ≥ 0. Roughly S is proportional to
the number of arrangements of the molecules at a given volume V and temperature
T/internal energy E. Thence increasing entropy means increasing chaos, e.g. heat
flows from hot to cold.

In our sound, there is not sufficient time to conduct heat from peak to trough
of a wave, and so δQ = 0, equivalent dS = 0 which is called isentropic/adiabatic.
Actually not quite true, because there is important heat transport across the very thin
shock-waves, i.e. dS > 0 across a shock.

Maxwell relations – mad maths of partial differentiation
Very important to display what is a function of what, and so what is being held

constant during the partial differentiation. One is permitted to take any two as inde-
pendent variables, e.g. ρ & T or ρ & p or S & ρ.

For dE = T dS − p dV , viewing all variables (E, T , ρ) as functions of S & V
(= 1/ρ), so
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)

V
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)

S

.

But by cross differentiation
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Another Maxwell relation is obtained by the following trick d(E + pV ) = t dS + V dp,
so

(
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∂p

)

S

=
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)

p

.

The combination H = E + pV is important in fluid mechanics, called enthalpy.

3rd law – exists T = 0
There is a universal absolute zero where all thermal motion stops. Not useful in

acoustics at room temperature.

1.4 *Perfect gas*

For dilute gases, fine for air as ρair = 10−3ρliquid air. This course will only use
perfect gas laws, although generalisations to dense gases are not too difficult.
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Pressure
Pressure force on a surface is momentum exchanged from collisions in unit time

p = Nm〈v2
x〉, where N is the number of molecules per volume and m〈v2

x〉 = kT with
Boltzmann’s constant k = 1.38 10−23 J K−1. Hence

p = ρRT

with gas constant R = NAk, with Avogadro’s number NA = 6.02 1023 per mole (1 mole
of C12 weights 12 gm).

Internal energy
In a perfect gas, the internal energy E varies with temperature T but not with

density ρ because dilute means the size of the molecules is irrelevant. If we further
assume that the specific heats do not vary with temperature (OK for 100-2000 K when
do not excite vibrational modes), then

cV =

(

∂E

∂T

)

V

= constant and

(

∂E

∂V

)

T

= 0

so
E = cV T

setting constant of integration to zero.

From Kinetic Theory, E = 1
2
kT per degree of freedom of the internal motion

possessing energy, i.e. 3
2
NkT = 3

2
RT for monatomic gases He and Ar, and 5

2
NkT for

diatomic gases H2, N2, O2, CO – rigid with rotational KE but no vibrational modes.
The other specific heat is

cp =
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)

p
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)

p

= cV + R

using E = cV T and V = 1/ρ = RT/p. Thence the ratio of specific heats

γ =
cp

cV
=

cV + R

cV

5
3

for monatomic and 7
5

for diatomic gases. A useful alternative expression for the
internal energy is then
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(

T =
pV

R
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and for enthalpy

H = E +
p

ρ
=

γ

γ − 1

p

ρ
.
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Entropy of a perfect gas
Now T dS = dE + p dV and E = cV T and p = RT/ρ, so

dS = cV
dT

T
+

R

V
dV

Integrating

S − S0 =cV ln
T
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+ R ln
V

V0

=cV ln

[

(

T

T0

=
pV

p0V0

) (

V

V0

)R/cV

=
p

p0

(

V

V0

)1+R/cV =γ
]

.

So

S = S0 + cV ln

[

p
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(
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ρ

)γ]

.

Adiabatic/isentropic changes
In sound, where there is insufficient time to conduct heat across one wavelength,

δQ = 0, so dS = 0, so S is constant, so

p

p0

=

(

ρ

ρ0

)γ

,

and also T/T0 = (ρ/ρ0)
γ−1 from p = ρkT .

For small changes, we need the differential

(

∂p

∂ρ

)

S

= γ
p

ρ
= γRT,

which will find is c2 the square of the speed of sound, which is 340 m s−1 for dry air.
Newton made a mistake of assuming an isothermal change (∂p/∂ρ)T = RT missing the
factor of γ which is 1.4 for dry air. It can be shown for non-perfect gases (exercise in
partial differentiation for student) that (∂p/∂ρ)S = γ(∂p/∂ρ)T .
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