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MATHEMATICAL TRIPOS PART IIB Prof E.J. Hinch
‘Waves in Fluid and Solid Media’ February 2003

Example Sheet 3: Dispersive Waves

1. Stoneley waves. Examine the propagation of surface waves (whose amplitudes decay
away from the interface in both directions) at the interface between a homogeneous
elastic solid and an elastic fluid. Note: since the fluid can support only compressional
waves, continuity of tangential displacement cannot be imposed at the interface (i.e. the
fluid can slip past the solid).

With a fluid density ρ̄ and a fluid sound speed c̄ you should find the analogue of
Rayleigh’s equation as
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* Discuss solutions to this equation.

2. Love waves under a rigid surface. A layer of thickness h has a rigid upper surface,
a shear modulus µ̄ and a shear wavespeed c̄S . It overlies a uniform half space with
shear modulus µ and shear wavespeed cS (cS > c̄S). Find the dispersion relation for
Love waves of frequency ω and wavenumber k to exist on this structure. Determine
the cut-off frequency for each mode, and the limiting phase velocity for high-frequency
propagation. Sketch the phase velocity curve, *and group velocity curve*, as a function
of frequency.

3. SH waves in an elastic layer. Consider the propagation of SH waves in a layer made
from a solid with shear modulus µ and shear wavespeed cS . Assume that the layer is of
thickness h, and that the boundaries at y = 0 and y = h are free surfaces. Derive the
dispersion relation for both symmetric and antisymmetric modes. Verify that the time
averaged wave energy flux is equal to the time averaged wave energy density times the
group velocity cg.

4. The Klein–Gordon Equation. The motion of a 2D membrane supported by springs
and subject to a forcing f(x, t) per unit length, is governed by the Klein–Gordon equa-
tion
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where

F (x, t) = −T η̇ηx .

Give a physical interpretation to each term. Show that in the case of an unforced
membrane, the time averaged wave energy flux is equal to the time averaged wave
energy density times the group velocity cg.
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5. Properties of finite-depth capillary-gravity waves. For waves of radian wave-number
k on water of density ρ and uniform depth h, taking surface tension T as well as the
gravitational acceleration g into account, the dispersion relation is

ω2 = k(g + Tk2/ρ) tanh kh .

Show that for sufficiently large k the group and phase velocities cg and cp become

proportional to k
1

2 and independent of g and h, and that cg ∼ 3
2cp.

In ripple-tank experiments it is desired to keep cg and cp as nearly constant as
possible for smaller values of kh. By expanding ω2 in ascending powers of k, determine
approximately what value of h, h0 say, should be used. Show also that for h > h0 there
must exist a minimum value of the group velocity at some finite non-zero value of k.

Comment: For water a typical value of T/ρg would be 7.5 mm2, so that h0 = 4.74 mm.

6. An example of a causal solution where the wavecrests move toward the source.

What is meant by the ‘radiation condition’? Show that the solution of

∂4ψ

∂x2t2
− α2ψ = 0 ,

which represents steady propagation into 0 < x < ∞ of waves generated by a time-
harmonic boundary condition

ψ|x=0 = ae−iωt ,

is
ψ = ae−iω(t+(αx/ω2)) (α > 0) [sic] .

[One physical system to which this problem corresponds is that of a vertical tube (x
vertical), containing a density-stratified fluid; this acts as a waveguide for internal
gravity waves whose wavelength 2π/k is short compared with the dimensions of the
tube.]

7. An example of stationary phase. (Old Tripos: 77126). A hypothetical physical
system permits one-dimensional wave propagation in the x-direction according to an
equation of the form

∂ψ

∂t
− β

∂3ψ

∂x3
= 0 (β > 0, constant) . (∗)

Write down the corresponding dispersion relation and sketch graphs of frequency, phase
velocity and group velocity as functions of wave number. Determine whether it is the
shortest or longest waves which are to be found at the front of a dispersing wave train
arising from a localised initial disturbance. Do the wave crests move faster or slower
than the wave train as a whole?

An initial disturbance is given in the form of a Fourier integral,

ψ(x, 0) =

∫ ∞

−∞

A(k)eikx dk .

Write down the corresponding solution of (*) and use the method of stationary phase
to obtain an approximation to this solution for large t with t/x held constant. Do not
consider complex k, nor give rigorous estimates of error. You may assume that

∫ ∞

−∞

e±iu2

du = π1/2e±iπ/4 .
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8. The generation of gravity waves. (i) Find a combination of gravity waves on deep
water travelling in the directions x increasing and x decreasing that satisfies the con-
ditions

ζ = ζ0 cos kx, ∂ζ/∂t = 0 ,

at time t = 0, where ζ is the upward displacement of the free surface at y = 0 (assume
no surface tension).

(ii) In a deep and very long channel, parallel to the x-axis, the water surface is distorted
by the action of air jets into a shape

ζ = −ζ0e
−(x/a)2 ,

independent of z, and then released from rest at time t = 0. Obtain the subsequent
shape of the free surface as a sum of two Fourier integrals. Use the method of stationary
phase to obtain their approximate value when x and t are both large and positive.

9*. A model system demonstrating the ideas of group velocity. A very large number
of identical pendulums are arranged with their points of support equally spaced along
a long horizontal line so that they can all swing in the same vertical plane. The bob
of each pendulum has mass m and is at a distance ` from its point of support. Every
adjacent pair of bobs is a distance h apart and is joined by a light spring, which resists
any change in this distance of separation with a force equal to K times the change
in distance, where K � mg/`. Show that sinusoidal wave motions with wavelength
λ much greater than h can propagate along the row of pendulums, provided that the
radian frequency ω satisfies

ω = ±

√
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g

`
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)

where k = 2π/λ is the (radian) wavenumber. Use the idea of group velocity to give a
general description (without doing detailed calculations) of what would happen if from
time t = 0 onwards the pendulum at one extreme end were forcibly given a regular
sinusoidal displacement with radian frequency 1.5

√

(g/`).
A precisely analogous device (but using transverse instead of longitudinal vibra-

tions) was frequently used by Osborne Reynolds to demonstrate the phenomenon of
group velocity; see Lighthill, p. 281, ex. 6 for further details. Note that the acoustic
waveguide has a dispersion relation of the same form, ω2 = a2 + b2k2 (a, b real con-
stants). Yet another physical system with this form of dispersion relation is an ionised
gas through which plane electromagnetic waves propagate (Feynman Lectures II, §7.3).
The electrons play a role analogous to the pendulum bobs, the comparatively immobile
positive ions corresponding to the points of support, and the net Coulomb force on the
electrons to the gravitational restoring force. (Frequencies well above the ionospheric
cutoff frequency a must be used for satellite communications!)
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