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MATHEMATICAL TRIPOS PART IIB Prof E.J. Hinch
‘Waves in Fluid and Solid Media’ March 2003

Example Sheet 4: Ray Theory

1. The governing equation of sound waves in a stratified fluid. A gas exactly satisfies
the equation of state

plp.T) = Ap? |

where A is a constant independent of the temperature T'. The gas fills z > 0 and is at
rest in a gravity field g = (0,0, —g). Show that the density is given by

where 2y < 0 is a constant.

Show that linear sound waves propagating in the above gas satisfy
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where p(x, t) is the density perturbation, pg(z) is the unperturbed density, and co(2) is
the local speed of sound. Deduce that a slowly varying approximation for sound waves
with wavenumber k is valid in z > 0 if |kzo| > 1.

2. The wave-crest pattern near a shore line. (Old Tripos: 87327). Surface waves on
water have a dispersion relation w = Q(k; x, 2) where k? = k3+k2, (x, 2) are coordinates
in the plane of the surface, and the medium is ‘slowly varying’ in the (z, z) coordinates.
Assume the relation

wt + (¢g.V)w =0,

where ¢, is the group velocity, and deduce
(a) that w is constant on rays, dz/dx = ks/k1,
(b) that the wave crests at any instant are given by dz/dx = —k /ks.

Surface tension effects are negligible, and the wave motion takes place over a sloping
beach of depth h(z) = ax'/?, with o a small positive constant. The dispersion relation
for such waves may be assumed to be given by Q? = gx tanh xkh. Far from the shore-line
xr = 0, the waves are plane, have frequency w, and have angle ® between the crests
and the shore-line. As the waves propagate towards the shore they become non-planar.
Obtain the parametric equations
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for the wave crest which passes through the shore-line at z = z3. Show that near the
shore-line the equation of the wave crest can be written explicitly as
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3. Wave breaking. Ocean surface waves propagate obliquely from x = —oo on water
of depth h(x,z) = —fz towards a straight beach at x = 0 where they break and are
dissipated. For a slowly varying depth, § < 1, you may assume that the dispersion
relation is

0% = gk tanh kh |

where k2 = k? + k2 for the surface wavenumber (ki,k3). As in question 2 the fre-
quency w, and the component k3 of the wavenumber along the beach, remain con-
stant. Deduce that the shorewards component of the wavenumber, ki, increases, and
ki ~w(—gBz)~Y? as z — 0.

Find how the amplitude a of the waves varies, where 2a is the difference in height
between the crests and the troughs of the waves. Show that if the waves break when
ak = 0.1 in a region where kh < 1, then the point x; at which they break is given by
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[Hint: Write down the solution for the free-surface, calculate the mean potential energy,
and use equipartition of energy.}

=0.02.

4. Sound rays in a slowly varying medium. Deduce that for a time-independent, slowly
varying, medium the frequency w is constant at a ‘ray point’” moving with the group
velocity. If moreover the properties of the medium are independent of two Cartesian
coordinates, say x and y, deduce Snell’s law that

sina «x ¢,

where « is the angle between the wavenumber k and the z-axis, and c is the local phase
speed for waves of wavenumber k. For what type of dispersion relation is the direction
of the ray parallel to k?

Consider a dispersion relation of the form w = A|k|z, where A is a constant, and
let ds be an element of arc length along a ray. Show that in this case da//ds is constant
along a ray, and hence that each ray is the arc of a circle. Show that a wave packet
moving towards the plane z = 0 takes an infinite time to reach it.



5. The wave pattern generated by a duck swimming on a pseudo-fluid. For a slowly
varying, two-dimensional wave pattern of the form A(x,t)exp(ie~10(x,t)), and a local
dispersion relation w = Q(k, x, t), derive the ray-tracing equations
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For a homogeneous, time-independent (but not necessarily isotropic) medium, show
that all rays are straight lines. When the waves have zero frequency, deduce that if the
point x lies on a ray emanating from the origin in the direction given by a unit vector
¢4, then

6(x) =6(0) + ¢y kx| .

Consider a duck swimming steadily with velocity V' in a homogeneous pseudo-fluid.
In the duck’s frame, the dispersion relation is found to be

Q(k1, ko) = a(k? + k2)5 — Vi ,

The duck generates a steady wave pattern. By writing (k1, ko) = k(cos ¢, sin ¢), show

that the waves satisfy
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and that the group velocity of these waves can be expressed as

cy = %V(— cos? ¢ — 3sin® ¢, 2sin ¢ cos @) .

Deduce that the waves occupy a wedge of semi-angle %7? about the negative x-axis.
Find equation[s] describing the wave crests, and sketch the wave-crest pattern.

6. ‘Reflection’ and ‘absorption’ of internal gravity waves. Two-dimensional internal
gravity waves on a ‘slowly varying’ shear flow in the atmosphere satisfy the dispersion
relation

Nk
( k2 + g2)1/2 ’
where v and N are positive constants, and k£ and ¢ are the xz-and y-components of the

wave number respectively. Show that as a wave packet moves, w and k remain constant,
while

w = yyk +

where ¢ is a constant. If ¢, is positive, describe the motion in the [vertical] y-direction
of a wave packet generated at the origin. Sketch the ray in the neighbourhood of
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