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MATHEMATICAL TRIPOS PART IIB Prof E.J. Hinch
‘Waves in Fluid and Solid Media’ March 2003

Example Sheet 4: Ray Theory

1. The governing equation of sound waves in a stratified fluid. A gas exactly satisfies
the equation of state

p(ρ, T ) = λρ
1

2 ,

where λ is a constant independent of the temperature T . The gas fills z ≥ 0 and is at
rest in a gravity field g = (0, 0,−g). Show that the density is given by

ρ =
λ2

g2(z − z0)2
,

where z0 < 0 is a constant.

Show that linear sound waves propagating in the above gas satisfy
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where ρ̃(x, t) is the density perturbation, ρ0(z) is the unperturbed density, and c0(z) is
the local speed of sound. Deduce that a slowly varying approximation for sound waves
with wavenumber k is valid in z ≥ 0 if |kz0| � 1.

2. The wave-crest pattern near a shore line. (Old Tripos: 87327). Surface waves on
water have a dispersion relation ω = Ω(κ; x, z) where κ2 = k2

1+k2
3, (x, z) are coordinates

in the plane of the surface, and the medium is ‘slowly varying’ in the (x, z) coordinates.
Assume the relation

ωt + (cg.∇)ω = 0 ,

where cg is the group velocity, and deduce
(a) that ω is constant on rays, dz/dx = k3/k1,
(b) that the wave crests at any instant are given by dz/dx = −k1/k3.

Surface tension effects are negligible, and the wave motion takes place over a sloping
beach of depth h(x) = αx1/2, with α a small positive constant. The dispersion relation
for such waves may be assumed to be given by Ω2 = gκ tanhκh. Far from the shore-line
x = 0, the waves are plane, have frequency ω, and have angle Φ between the crests
and the shore-line. As the waves propagate towards the shore they become non-planar.
Obtain the parametric equations

x =
λ2g2

α2ω4
tanh2 λ ,

z − z0 =
g2

α2ω4

∫ λ

0

(1 − tanh2 p sin2 Φ)1/2

tanh p sin Φ

d

dp
(p2 tanh2 p) dp ,

for the wave crest which passes through the shore-line at z = z0. Show that near the
shore-line the equation of the wave crest can be written explicitly as

(z − z0)
4 ≈

(

4

3 sin Φ

)4
g2

α2ω4
x3 .
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3.∗ Wave breaking. Ocean surface waves propagate obliquely from x = −∞ on water
of depth h(x, z) = −βx towards a straight beach at x = 0 where they break and are
dissipated. For a slowly varying depth, β � 1, you may assume that the dispersion
relation is

Ω2 = gκ tanhκh ,

where κ2 = k2

1
+ k2

3
for the surface wavenumber (k1, k3). As in question 2 the fre-

quency ω, and the component k3 of the wavenumber along the beach, remain con-
stant. Deduce that the shorewards component of the wavenumber, k1, increases, and
k1 ∼ ω(−gβx)−1/2 as x → 0.

Find how the amplitude a of the waves varies, where 2a is the difference in height
between the crests and the troughs of the waves. Show that if the waves break when
aκ = 0.1 in a region where κh < 1, then the point xb at which they break is given by

a2(∞)
k1(∞)

κ(∞)

ω

(−gβ3x3

b)
1/2

= 0.02 .

[

Hint: Write down the solution for the free-surface, calculate the mean potential energy,

and use equipartition of energy.
]

4. Sound rays in a slowly varying medium. Deduce that for a time-independent, slowly
varying, medium the frequency ω is constant at a ‘ray point’ moving with the group
velocity. If moreover the properties of the medium are independent of two Cartesian
coordinates, say x and y, deduce Snell’s law that

sin α ∝ c ,

where α is the angle between the wavenumber k and the z-axis, and c is the local phase
speed for waves of wavenumber k. For what type of dispersion relation is the direction
of the ray parallel to k?

Consider a dispersion relation of the form ω = A|k|z, where A is a constant, and
let ds be an element of arc length along a ray. Show that in this case dα/ds is constant
along a ray, and hence that each ray is the arc of a circle. Show that a wave packet
moving towards the plane z = 0 takes an infinite time to reach it.
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5. The wave pattern generated by a duck swimming on a pseudo-fluid. For a slowly
varying, two-dimensional wave pattern of the form A(x, t) exp(iε−1θ(x, t)), and a local
dispersion relation ω = Ω(k,x, t), derive the ray-tracing equations

k̇i = −
∂Ω

∂xi
, ẋi =

∂Ω

∂ki
, ε−1θ̇ = −Ω + ki

∂Ω

∂ki
, (i = 1, 2) .

For a homogeneous, time-independent (but not necessarily isotropic) medium, show
that all rays are straight lines. When the waves have zero frequency, deduce that if the
point x lies on a ray emanating from the origin in the direction given by a unit vector
ĉg, then

θ(x) = θ(0) + ε ĉg.k|x| .

Consider a duck swimming steadily with velocity V in a homogeneous pseudo-fluid.
In the duck’s frame, the dispersion relation is found to be

Ω(k1, k2) = α(k2

1 + k2

2)
1

3 − V k1 ,

The duck generates a steady wave pattern. By writing (k1, k2) = κ(cos φ, sin φ), show
that the waves satisfy

κ =
α3

V 3 cos3 φ
,

and that the group velocity of these waves can be expressed as

cg = 1

3
V (− cos2 φ − 3 sin2 φ , 2 sinφ cos φ) .

Deduce that the waves occupy a wedge of semi-angle 1

6
π about the negative x1-axis.

Find equation[s] describing the wave crests, and sketch the wave-crest pattern.

6. ‘Reflection’ and ‘absorption’ of internal gravity waves. Two-dimensional internal
gravity waves on a ‘slowly varying’ shear flow in the atmosphere satisfy the dispersion
relation

ω = γyk +
Nk

(k2 + `2)1/2
,

where γ and N are positive constants, and k and ` are the x-and y-components of the
wave number respectively. Show that as a wave packet moves, ω and k remain constant,
while

`(t) = `0 − γkt ,

where `0 is a constant. If `0 is positive, describe the motion in the [vertical] y-direction
of a wave packet generated at the origin. Sketch the ray in the neighbourhood of

(a) y = −
N

γ

(

1

k
−

1

(k2 + `2

0
)1/2

)

,

and

(b) y =
N

γ(k2 + `2

0
)1/2

.
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