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Small particles in a viscous fluid

Course in three parts

1. A quick course in micro-hydrodynamics

2. Sedimentation of particles

3. Rheology of suspensions

Good textbook for parts 1 & 2:
A Physical Introduction to Suspension Dynamics
by Elisabeth Guazzelli, Jeffrey F. Morris and Sylvie Pic
(Cambridge Texts in Applied Mathematics 2012).
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Stokes equations

Simple properties

Flow past a sphere

More simple properties

Greens function

Effect of small inertia
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Continuum mechanics

Continuum description: mass density ρ(x, t), velocity u(x, t), etc.
Eulerian, not Lagrangian

Mass conservation
∂ρ

∂t
+∇·(ρu) = 0

But for constant density, flows are incompressible

∇·u = 0.

Forces in continuum description:
volume forces F and surface tractions σijnj .

So Cauchy momentum equation

ρ

(
∂u

∂t
+ u·∇u

)
= ∇·σ + F
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Navier-Stokes equation

Newtonian viscous fluids

σij = −pδij + 2µeij ,

with pressure p(x, t) determined globally by incompressibility
rather than locally by an equation of state p(ρ)

and strain-rate

eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
Note this is the most general relationship between σ and ∇u which
is linear, instantaneous and isotropic.

Hence the Navier-Stokes equation (momentum for a Newtonian
viscous fluid) assuming µ constant.

ρ

(
∂u

∂t
+ u·∇u

)
= −∇p + µ∇2u + F

Boundary conditions

u(x) given, or σ ·n(x) given
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Small Reynolds number

For a flow U over distances L, the Reynolds number is

Re =
|ρu·∇u|
|µ∇2u|

=
ρU2/L

µU/L2
=

UL

ν

where ν = µ/ρ is the kinematic viscosity.

Small Reynolds number, Re � 1 if

I small U, e.g. 1 cm/day in oil reservoirs,

I small L, e.g. 10µm bacteria,

I large ν, e.g. 108m2/s molten glass

I e.g. 1µm water droplet falls under gravity in air at 0.1mm/s,
so Re = 10−5.
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Stokes equations

If Re � 1, then Stokes flow (also called “creeping flow”)

0 = −∇p + µ∇2u + F

with ∇·u = 0.

Note: Stokes theory for Re � 1 usually works for Re < 2.
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Simple properties

1. Linear and Instantaneous
Dropping nonlinear u·∇u and time-dependent ∂u/∂t leaves Stokes
equations linear and instantaneous.

E.g. Rigid particle translation at U(t) in unbounded fluid
Flow u(x, t) linear & instantaneous in U(t), also σ(x, t), hence
drag force

F(t) = A·U(t)

with A depending on size, shape, orientation and viscosity.

2. Reversible in time
Apply force F(t) in 0 ≤ t ≤ t1.
Now reverse force and its history, i.e. F(t) = −F(2t1 − t) in
t1 ≤ t ≤ 2t1
Then flow u(x, t) and its history reverses.
Hence all fluid particles return to starting position.

Hence cannot swim at Re � 1 by reversible flapping.
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Simple properties

3. Reversible in space:
Linearity + symmetry of geometry ⇒ certain parts of u vanish.

E.g. 1. A sphere sedimenting next to a vertical wall does not
migrate towards or away from the wall at Re � 1.

E.g. 2. Two equal spheres fall without separating. (Spin?)

E.g. 3. An ellipsoid (particle with three perpendicular planes of
symmetry) falls under gravity without rotation in an unbounded
flow.

E.g. 4. Two rigid spheres in a shear flow (possibly unequal,
possibly next to a rigid wall) resume their original undisturbed
streamlines after a collision.
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Flow past a sphere

Uniform flow U past a rigid sphere of radius a.

1. The solution – more important than derivation

u = U

(
1− 3a

4r
− a3

4r3

)
+ x(U·x)

(
− 3a

4r3
+

3a3

4r5

)
,

p = −3aµU·x
2r3

and σ ·n|r=a =
3µ

2a
U.

Hence the Stokes drag on the sphere is∫
r=a

σ ·n dS = 4πa2
3µ

2a
U = 6πµaU.
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Flow past a sphere

2. Solution method 1
The linearity of the Stokes equations means that u(x) must be
linear in U.

Further, the problem has spherical symmetry about the centre of
the sphere, which take as the origin.
The velocity and pressure fields must therefore take the forms

u(x) = Uf (r) + x(U·x)g(r),

p(x) = µ(U·x)h(r),

where r = |x|, and f , g and h are functions of scalar r to be
determined.

Now

∂ui
∂xj

= Uixj f
′/r + δijUnxng + xiUjg + xixjUnxng

′/r .
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Flow past a sphere
solution method 1

Contracting i with j , we have the incompressibility condition

0 = ∇·u = Unxn(f ′/r + 4g + rg ′).

Differentiating again for momentum equation

µ∇2ui = µUi

(
f ′′ + 2f ′/r + 2g

)
+ µxiUnxn

(
g ′′ + 6g ′/r

)
∇ip = µUih + µxiUnxnh

′/r

Hence the governing equations give

f ′/r+4g+rg ′ = 0, f ′′+2f ′/r+2g = h and g ′′+6g ′/r = h′/r .

Eliminating h and then f yields

r2g ′′′ + 11rg ′′ + 24g ′ = 0.

Solutions of the form g = rα.

Substituting, one finds α = 0, −3 and −5, with associated
f = −(α + 4)rα+2/(α + 2) and h = −(α + 5)(α + 2)rα.
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Flow past a sphere
solution method 1

Hence the general solution of the assumed form linear in u is

u(x) = U
(
−2Ar2 + B + Cr−1 − 1

3Dr
−3)+ x(U·x)

(
A + Cr−3 + Dr−5

)
,

p(x) = µ(U·x)
(
−10A + 2Cr−3

)
.

We shall need the stress exerted across a spherical surface with
unit normal n = x/r

σ ·n = U
(
−3Ar + 2Dr−4

)
+ x(U·x)

(
9Ar−1 − 6Cr−4 − 6Dr−6

)
Applying the boundary conditions on the rigid sphere and for the
far field, we find the coefficients

A = 0, B = 1, C = −3
4a and D = 3

4a
3

For solution given earlier

16



Flow past a sphere
solution method 1

Hence the general solution of the assumed form linear in u is

u(x) = U
(
−2Ar2 + B + Cr−1 − 1

3Dr
−3)+ x(U·x)

(
A + Cr−3 + Dr−5

)
,

p(x) = µ(U·x)
(
−10A + 2Cr−3

)
.

We shall need the stress exerted across a spherical surface with
unit normal n = x/r

σ ·n = U
(
−3Ar + 2Dr−4

)
+ x(U·x)

(
9Ar−1 − 6Cr−4 − 6Dr−6

)

Applying the boundary conditions on the rigid sphere and for the
far field, we find the coefficients

A = 0, B = 1, C = −3
4a and D = 3

4a
3

For solution given earlier

16



Flow past a sphere
solution method 1

Hence the general solution of the assumed form linear in u is

u(x) = U
(
−2Ar2 + B + Cr−1 − 1

3Dr
−3)+ x(U·x)

(
A + Cr−3 + Dr−5

)
,

p(x) = µ(U·x)
(
−10A + 2Cr−3

)
.

We shall need the stress exerted across a spherical surface with
unit normal n = x/r

σ ·n = U
(
−3Ar + 2Dr−4

)
+ x(U·x)

(
9Ar−1 − 6Cr−4 − 6Dr−6

)
Applying the boundary conditions on the rigid sphere and for the
far field, we find the coefficients

A = 0, B = 1, C = −3
4a and D = 3

4a
3

For solution given earlier
16



Flow past a sphere

2. Solution method 2

Use a Stokes streamfunction for the axisymmetric flow

ur =
1

r2 sin θ

∂Ψ

∂θ
and uθ = − 1

r sin θ

∂Ψ

∂r
.

The vorticity equation (curl of the momentum equation, to
eliminate the pressure) is then at low Reynolds numbers

D2D2Ψ = 0 where D2 =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
.

The uniform flow at infinity has Ψ = 1
2Ur

2 sin2 θ, so one tries
Ψ = F (r) sin2 θ, and finds F = Ar4 + Br2 + Cr + D/r .
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Flow past a sphere

3. Solution method 3

One can show (Papkovich-Neuber) that the general solution of the
Stokes equation can be expressed in terms of a vector harmonic
function φ(x) (i.e. ∇2φ = 0)

u = 2φ−∇(x·φ) p = −2µ∇·φ.

σij = 2µ

(
δij
∂φn
∂xn
− xk

∂2φk
∂xi∂xj

)
.

Linearity and spherical symmetry then give

φ = AU
1

r
+ BU·∇∇1

r
,

with coefficients A and B to be determined by applying the
boundary conditions.
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Flow past a sphere

4. Solution method 4

The pressure and vorticity are harmonic functions.

Using linearity and spherical symmetry, they must take the form

p = µAU·x/r3 and ∇∧ u = BU ∧ x/r3.

The final step to u is tedious.
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Sedimentation of a rigid sphere

Force balance, with densities ρs of sphere and ρf of fluid

0 = ρs
4π
3 a3g − ρf

4π
3 a3g − 6πµaU

no inertia weight buoyancy Stokes drag

So Stokes settling velocity

U =
2∆ρa2g

9µ

E.g. 1µm sphere, ∆ρ = 103 kgm−3, water µ = 10−3 Pa s
gives U = 2µm/s, i.e. falls through diameter in a second.
(Check Re = 10−6)

Drag on a fluid sphere (Student exercise!)

F = −2π 2µf +3µs
µf +µs

µf aU

20
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Rotation of a rigid sphere

Sphere rotating at angular velocity Ω.
Flow

u(x) = Ω ∧ x
a3

r3

(A potential flow, so satisfies Stokes equations.)

Hence couple on sphere – student exercise!

G = 8πµa3Ω

21



Rotation of a rigid sphere

Sphere rotating at angular velocity Ω.
Flow

u(x) = Ω ∧ x
a3

r3

(A potential flow, so satisfies Stokes equations.)

Hence couple on sphere – student exercise!

G = 8πµa3Ω

21



Stokes flow past an ellipsoid

For principle semi-diameters a1, a2, a3 Oberbeck (1876) found

Force F1 = − 16πµU1

L + a21K2
and Couple G1 = − 16πµ(a22 + a23)

3(a22K2 + a23K3)

where

L =

∫ ∞
0

dλ

∆(λ)
and Ki =

∫ ∞
0

dλ

(a2i + λ)∆(λ)

with ∆2 = (a21 + λ)(a23 + λ)(a23 + λ).

For a disk a1 � a2 = a3

F1 ∼ 16πµa2U1, F2 ∼ 32
3 µa2U2, Gi ∼ 8

3µa2Ωi

For a rod a1 � a2 = a3, where ln = ln 2a1
a2

F1 ∼
4πµa1U1

ln−1
2

, F2 ∼
8πµa1U2

ln +1
2

, G1 ∼ 16
3 πµa1a2Ω1, G2 ∼

8
3πµa

3
1Ω2

ln−1
2

Important conclusion Drag ≈ 6πµ with largest diameter.
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A quick course in micro-hydrodynamics

Stokes equations

Simple properties

Flow past a sphere

More simple properties
A useful result
Minimum dissipation
Uniqueness
Geometric bounding
Reciprocal theorem
Symmetry of resistance matrix
Faxen’s formula

Greens function

Effect of small inertia
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More simple properties
1. A useful result

Let uS(x) be a Stokes flow with F = 0 in V , and let u(x) be any
other incompressible flow, then∫

V
2µeSij eij dV =

∫
S
σSij njui dA.

Because

2µeSij = σSij + pSδij and pSδijeij = pS∇·u = 0 (1)

so 2µeSij eij = σSij eij . (2)

And

σSij = σSji so (3)

σSij eij = σSij
∂ui
∂xj

=
∂

∂xj

(
σS ijui

)
−
∂σSij
∂xj
=F=0

ui (4)

Hence result by divergence theorem.
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More simple properties
2. Minimum dissipation

Let u(x) and uS(x) be two incompressible flows in V , both
satisfying the same boundary condition u = uS = U(x) give on S .

Let uS also satisfy the Stokes equation with F = 0 in V .
Then ∫

V
2µeijeij dV =

∫
V

2µeSij e
S
ij dV

+

∫
V

2µ(eij − eSij )(eij − eSij ) dV

←−positive−→

+

∫
V

4µeSij (eij − eSij ) dV .

The last integral is of the form of the useful result∫
V

4µeSij (eij − eSij ) dV =

∫
S

2σSij nj(ui − uSi ) dA = 0 by bc
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More simple properties
2. Minimum dissipation

Hence ∫
V

2µeijeij dV ≥
∫
V

2µeSij e
S
ij dV ,

i.e. the Stokes flow uS(x) has the minimum dissipation out of all
incompressible flows satisfying the boundary condition

Hence e.g. drag larger at non-zero Reynolds number.

Warning: Same geometry. Cannot select geometry by minimum
dissipation.
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More simple properties
3. Uniqueness

If u1(x) and u2(x) are two Stokes flows in V satisfying the same
boundary conditions, then minimum dissipation gives∫

V
2µ(e1ij − e2ij)(e1ij − e2ij) dV = 0

Hence
e1ij − e2ij = 0 in V ,

i.e. u1 − u2 is strainless, i.e. a solid body translation + rotation,
i.e. zero by the boundary conditions. Hence

u1(x) = u2(x) in V .

Hence Stokes flows are unique.
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More simple properties
4. Geometric bounding

Rigid cube, sides of length 2L, moving at U, drag F.

Let uS(x) be Stokes flow outside cube, V .
Then dissipation∫

V
2µeSij e

S
ij dV = rate of working by surface forces = −U·F.

Cube just contained by sphere radius a =
√

3L, also moving at U.

Define second flow

u(x) =

{
the Stokes flow for sphere outside sphere,

U in gap.
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More simple properties
4. Geometric bounding

For this second flow∫
V

2µeijeij dV =

∫
r>a

2µeijeij dV because e = 0 in gap,

= rate of working by sphere = 6πµ
√

3LU·U

Hence minimum dissipation bounds drag F on cube

−F·U ≤ 6πµ
√

3LU·U

Similarly for sphere just contained inside cube

6πµLU·U ≤ −F·U

Student exercises: bound for tetrahedron (not so tight).
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More simple properties
5. Reciprocal theorem

For the same volume V , let u1 be the Stokes flow with volume
forces f1 satisfying boundary conditions u1 = U1.

Let u2 be Stokes flow in V with f2 and U2.

Then by the useful result∫
V

u1 ·f2 dV +

∫
S

U1 ·σ2 ·n dA =

∫
V

2µe1 : e2 dV

=

∫
V

u2 ·f1 dV +

∫
S

U2 ·σ1 ·n dA

i.e. work done by one velocity on the forces of the other is vice
versa.
Greens theorem in any other subject
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More simple properties
6. Reciprocal theorem – application to resistance matrix

General rigid body motion in fluid at rest a infinity,
translating at U(t) and rotating (about a selected point) Ω(t).

By linearity and instantaneity, the force F(t) and couple G(t)
(about the same selected point)(

F
G

)
=

(
A B
C D

)(
U
Ω

)
The Reciprocal theorem gives for the two rigid body motions

U1 ·F2 + Ω1 · G2 = U2 ·F1 + Ω2 · G1

True all U1 etc, so

A = AT , B = CT and D = DT .
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More simple properties
6. Reciprocal theorem – application to resistance matrix

B = CT means

force due to rotation = couple due to translating.

A = AT & D = DT for symmetric cube means

A & D diagonal, and B = CT = 0

Thus drag on a cube is parallel to velocity,
also for symmetric tetrahedron.

Need “corkscrew” feature for B 6= 0.
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More simple properties
7. Reciprocal theorem – application to Faxen’s formula

A force-free sphere placed in arbitrary flow u∞(x) moves with what
velocity V? Forces which generate u∞ kept constant.

Let u+ be Stokes flow with sphere inserted in u∞.
Then disturbance flow is u1 = u+ − u∞.
Now same forces for u+ & u∞, so f1 = 0. Also u1 → 0 far from
sphere.
Let u2(x) be flow outside a sphere translating at U2 with f2 = 0.

Applying Reciprocal theorem∫
u1 · f2

=0
dV +

∫
u1 · σ2 ·n

=−3µu2/a
dA =

∫
u2 · f1

=0
dV +

∫
u2
=U2

·σ1 ·n dA.

Now look at RHS and then LHS, using u1 = u+ − u∞.
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More simple properties
7. Reciprocal theorem – application to Faxen’s formula

RHS = U2 ·
(∫

σ+ ·n dA−
∫

σ∞ ·n dA = 0− 0

)
= 0,

as both integrals are force on sphere.

Hence

LHS = −3µ

a
U2 ·

(∫
u+

=V
dA−

∫
u∞ dA

)
= RHS = 0

For all U2, so velocity of sphere inserted into u∞(x) is

V =
1

4πa2

∫
r=a

u∞(x) dA

34
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More simple properties
7. Reciprocal theorem – application to Faxen’s formula

V =
1

4πa2

∫
r=a

u∞(x) dA

Finally use a Taylor series

u∞(x) = u∞(0) + x·∇u∞|0 + 1
2xx : ∇∇u∞|0 + · · ·

Integrating over the sphere, the odd terms vanish by symmetry, so

V = u∞(0) + a2

6 ∇
2u∞|0

with higher even terms vanishing by ∇2n(Stokes equations) = 0.
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Integrating over the sphere, the odd terms vanish by symmetry, so

V = u∞(0) + a2

6 ∇
2u∞|0

with higher even terms vanishing by ∇2n(Stokes equations) = 0.
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A quick course in micro-hydrodynamics

Stokes equations

Simple properties

Flow past a sphere

More simple properties

Greens function
Stokeslet
Integral representation
Slender-body theory

Effect of small inertia
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Greens function for Stokes equations
or ‘Stokeslet’

For a point momentum source

∇·u = 0

0 = −∇p + µ∇2u + Fδ(x)

Solution – more important than derivation

u(x) = F·G(x) =
1

8πµ

(
F

1

r
+ (F·x)x

1

r3

)
σ(x) = F·K(x) = − 3

4π
F·xxx

1

r5

G is called the ‘Oseen tensor’.

Already seen this in flow past a sphere:

37



Greens function for Stokes equations
or ‘Stokeslet’

For a point momentum source

∇·u = 0

0 = −∇p + µ∇2u + Fδ(x)

Solution – more important than derivation

u(x) = F·G(x) =
1

8πµ

(
F

1

r
+ (F·x)x

1

r3

)
σ(x) = F·K(x) = − 3

4π
F·xxx

1

r5

G is called the ‘Oseen tensor’.

Already seen this in flow past a sphere:

37



Greens function for Stokes equations
or ‘Stokeslet’

For a point momentum source

∇·u = 0

0 = −∇p + µ∇2u + Fδ(x)

Solution – more important than derivation

u(x) = F·G(x) =
1

8πµ

(
F

1

r
+ (F·x)x

1

r3

)
σ(x) = F·K(x) = − 3

4π
F·xxx

1

r5

G is called the ‘Oseen tensor’.

Already seen this in flow past a sphere:

37



Greens function for Stokes equations
or ‘Stokeslet’

For a point momentum source

∇·u = 0

0 = −∇p + µ∇2u + Fδ(x)

Solution – more important than derivation

u(x) = F·G(x) =
1

8πµ

(
F

1

r
+ (F·x)x

1

r3

)
σ(x) = F·K(x) = − 3

4π
F·xxx

1

r5

G is called the ‘Oseen tensor’.

Already seen this in flow past a sphere:

37



Greens function for Stokes equations
Far field for a sphere

Far from the sphere r � a, the flow is

u = U

(
1− 3a

4r
− a3

4r3

)
+ x(U·x)

(
− 3a

4r3
+

3a3

4r5

)
,

But the drag is F = −6πµaU, i.e.

u−U ∼ 1

8πµ

(
F

1

r
+ (F·x)x

1

r3

)

Hence far-field due to force is universal, independent of particle
shape.
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Greens function for Stokes equations
Integral representation

To solve

∇·u = 0

0 = −∇p + µ∇2u + f(x)

with boundary conditions on u(x) or σ(x)·n.

Use the Reciprocal theorem (Greens theorem) with u1 for the
unknown flow and u2 for the Greens function for point source at x′

u(x′) =

∫
V

G(x− x′)·f dV
forces in V

+

∫
S

(
G(x− x′)·σ(x)·n

forces on S

− (K(x− x′)·n)·u

dipoles on S

)
dA
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Greens function for Stokes equations
Integral representation – Boundary integral Method

Letting x′ in V tend onto the surface S yields an integral equation
for the unknown u (or σ·n) on S in terms of the known σ·n (or u)
on S .

Delicate limit x′ → S :
∫

K·n→ +1
2u for x′ in V , −1

2u for x′

outside V , more complex at corners on S .

Basis of numerical Boundary Integral Method.

Advantage: fewer points on surface than in volume, and no infinity.

Disadvantages: Special attention needed in numerical evaluation of
singular integrals, and there are often eigensolutions, e.g. constant
pressure induces no flow.
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Greens function for Stokes equations
Integral representation - for a suspended drop

Extension to a drop of viscosity λµ surrounded by a fluid of
viscosity µ.

One knows the jump across the interface of the normal viscous
stress

σ ·n = γκn

with surface tension γ and surface curvature n.

Adding λ times the integral equation for the interior to that for the
exterior, one reduce the stress contribution to its difference

1
2(1 + λ)u(x′) = u∞(x′)

−
∫
S

G(x− x′)·γκn dA− (1− λ)

∫
S

K(x− x′)·n·u dA

41
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Greens function for Stokes equations
Slender-body theory

For slender bodies, approximate the distribution of forces σ ·n on
the surface S

by a distribution of forces f(s) along the centreline
X(s) in −L ≤ s ≤ L

u(x′) = u∞(x′) +

∫ L

−L
G(X(s)− x′)·f(s) ds

Satisfy the boundary condition by evaluating at distance εR(s0)
from centreline at s = s0, either numerically

or asymptotically for

f(s0) ∼ 2πµ

ln L
R

(
2I− X′X′

)
·(U(s0)− u∞(X(s0)))
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Effects of small inertia on flow past a sphere
Whitehead paradox

Flow U past a sphere of radius a.

At Re � 1, first approximation is given by Stokes flow.
Attempt to find correction as regular perturbation fails.
In far field

u = U + O

(
Ua

r

)
, so ρu·∇u = O

(
ρU2a

r2

)
A correction u2 forced by this

−∇p2 + µ∇2u2 = ρu·∇u|Stokes

would give
u2 = O(ρU2a/µ)

which does not decay.
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Effects of small inertia on flow past a sphere
Oseen equation

Look more carefully at Stokes solution. In far field

Viscous terms = O

(
µUa

r3

)
, while inertial terms = O(

(
ρU2a

r2

)
so at r = µ/U inertial terms no longer small.

Fortunately in far field u = U + u′ with u′ small, so can linearise
Navier-Stokes

ρU·∇u′ = −∇p′ + µ∇2u′ + Fδ(x)

where in far field sphere appears a point force.

Solve by Fourier transforms or representation

u′ = ∇φ+ ν∇χ−Uχ and p′ = −ρU·∇φ.
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Effects of small inertia on flow past a sphere
Oseen equation solved

Find

φ = −3aν

2r
(point volume source) and χ =

3a

2r
e( U·x

2ν
−Ur

2ν )

Look nearer to sphere a� r � ν/U, r−2 terms cancel and

u′ ∼ 1

r
Stokeslet + U

3Ua

4ν
uniform flow

Hence drag increases by 1 + 3
8Re.
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Effects of small inertia on flow past a sphere
Oseen wake

Look far from sphere r � ν/U near downstream axis

u′ ∼ −U
3a

2z
e−

U(x2+y2)
4νz

i.e. a wake diffusing to r =
√
ν(t = z/U) with mass flux deficit∫

ρu′ dxdy = −6πµUa =momentum deficit /U

Helpful idea at higher Re

Impacts on time-dependent flows – Basset history wrong

Missing mass flux in wake goes to point source φ-flow.
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A quick course in micro-hydrodynamics

Stokes equations

Simple properties

Flow past a sphere

More simple properties

Greens function

Effect of small inertia

47


	Stokes equations
	Continuum mechanics
	Navier-Stokes equation
	Small Reynolds number
	Stokes equations

	Simple properties
	Linear and instantaneous
	Reversible in time
	Reversible in time
	Reversible in time
	Reversible in time
	Reversible in time
	Reversible in time
	Reversible in space

	Flow past a sphere
	The solution
	Method 1
	Method 2
	Method 3
	Method 4
	Sedimenting sphere
	Rotating sphere
	Flow past an ellipsoid

	More simple properties
	A useful result
	Minimum dissipation
	Uniqueness
	Geometric bounding
	Reciprocal theorem
	Symmetry of resistance matrix
	Faxen's formula

	Greens function
	Stokeslet
	Integral representation
	Slender-body theory

	Effect of small inertia
	Whitehead paradox
	Oseen equation


