
Small particles in a viscous fluid

Course in three parts

1. A quick course in micro-hydrodynamics

2. Sedimentation of particles

3. Rheology of suspensions

Good textbook for parts 1 & 2:
A Physical Introduction to Suspension Dynamics
by Elisabeth Guazzelli, Jeffrey F. Morris and Sylvie Pic
(Cambridge Texts in Applied Mathematics 2012).
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Part 2. Sedimentation of particles

An isolated particle

Two particles

Finite clouds

Suspensions

Fluctuations in velocity of particles
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Sedimentation of an isolated sphere

Recall Stokes drag on a sphere 6πµaU

Force balance, with densities ρs of sphere and ρf of fluid

0 = ρs
4π
3 a3g − ρf

4π
3 a3g − 6πµaU

no inertia weight buoyancy Stokes drag

So Stokes settling velocity

US =
2∆ρa2g

9µ
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Stokes settling velocity

US =
2∆ρa2g

9µ

E.g. 1µm sphere, ∆ρ = 103 kgm−3, water µ = 10−3 Pa s gives
US = 2µms−1,
i.e. falls through diameter in a second at Re = 10−6.

Dependence ∝ a2, means 100µm sphere in water would fall 104

times faster at 1 cm s−1 at Re = 1.

E.g. 1µm sphere, ∆ρ = 103 kgm−3, air µ = 1.8 10−5 Pa s gives
US = 100µms−1 at Re = 10−5.

Drag on a spherical drop 2πµa 2µ+3µi
µ+µi

.
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Stokes flow past an ellipsoid

For principle semi-diameters a1, a2, a3 Oberbeck (1876) found

Force F1 = − 16πµU1

L + a21K2
and Couple G1 = − 16πµ(a22 + a23)

3(a22K2 + a23K3)

where

L =

∫ ∞
0

dλ

∆(λ)
and Ki =

∫ ∞
0

dλ

(a2i + λ)∆(λ)

with ∆2 = (a21 + λ)(a23 + λ)(a23 + λ).

For a disk a1 � a2 = a3

F1 ∼ 16πµa2U1, F2 ∼ 32
3 µa2U2, Gi ∼ 8

3µa2Ωi

For a rod a1 � a2 = a3, where ln = ln 2a1
a2

F1 ∼
4πµa1U1

ln−1
2

, F2 ∼
8πµa1U2

ln +1
2

, G1 ∼ 16
3 πµa1a2Ω1, G2 ∼

8
3πµa

3
1Ω2

ln−1
2

Important conclusion Drag ≈ 6πµ× (largest diameter).
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Part 2. Sedimentation of particles

An isolated particle

Two particles
Two equal spheres
Two unequal spheres
Three equal spheres
Method of Reflections

Zeroth approximation
First reflection
Second reflection
Collecting terms

Finite clouds

Suspensions

Fluctuations in velocity of particles 7



Fall of two equal spheres

Fall at constant separation by reversibility, sliding sideways.

Fall faster, up to 50% faster if close and vertical.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 2  3  4  5  6  7  8

U

r/a

Vertical

Horizontal

1+1.5/x

1+0.75/x

Approximations for large separations

U = US

(
1 +

3a

2r
+

a3

r3

)
, US

(
1 +

3a

4r
+

a3

r3

)
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Fall of two unequal spheres

Larger fall faster, so will overtake smaller.

Denser fall faster, so will overtake less dense.

Interesting interaction between two spheres with same isolated fall
speeds, one smaller and denser – dance round one another.

Three equal spheres: a fast pair can catch up a slow third,
interact, and a pair emerge leaving behind a different third,
i.e. ever changing configuration.
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Method of Reflections

An iterative method for far-field interactions between particles (use
lubrication for close particles).

Zeroth approximation: Treat particles as isolated. Each create
disturbances u0(x).

First reflection: Particles react to u0 as if isolated. Each create
disturbances u1(x).

Second reflection: Particles react to u1 as if isolated. Each create
disturbances u2(x).

and so on to more reflections

Can use computer algebra to go 100 reflections.
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Method of Refections: zeroth approximation

Zeroth approximation: each sphere falls as effectively isolated

u0 = u01 + u02

u01(x) = U1

(
3a1
4r1

+
a31
4r31

)
+

(U1 ·r1)r1
r21

(
3a1
4r1
− 3a31

4r31

)
with U1 isolated fall speed of 1, centred at x1, r1 = x− x1.

And u02(x) similar.
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Method of Refections: first reflection

First refection: Sphere 2 sees u01(x) in neighbourhood of x = x2

u01(x) = u01(x2)
(1)

+ r2 ·∇u01|x2
(2)

+ r2r2 : ∇∇u01|x2
(3)

+ . . .

(1) dominates, a uniform flow. Sphere 2 (now force free) moves
with this, i.e. additions to fall speed O(U1a1/r21) + O(U1a

3
1/r

3
21).

(2) smaller, a linear shear flow. Sphere 2 (couple free) rotates with
vorticity (antisymmetric part of ∇u01). Cannot deform with
straining symmetric part, so reacts with a force-dipole
O(a2 µa2 a2U1a1/r

2
21).

(3) even smaller, a quadratic flow. Reacts with force quadrupole
O(a22 µa2 a

2
2U1a1/r

3
21).

Addition to fall speed by Faxen 1
6a

2
2∇2u01 = O(a22U1a1/r

3
21).
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Method of Reflections: second reflection, collecting terms

Second reflection: Sphere 1 sees u12(x) from dipole,
quadrupole,. . . from sphere 2 as uniform + linear + quadratic flows

Additional fall speed due to uniform flows

O

(
U1

a1a
3
2

r221

1

r212

)
+ O

(
U1

a1a
5
2

r321

1

r312

)

Collecting contributions to fall speed

U1 + U2
a2
r12

+ U2
a32
r312

+ U2
a21a2
r312

+ U1
a1a

2
2

r221r
2
12

+ U1
a1a

5
2

r321r
3
12

+1/r8 + . . . from 2nd reflection +1/r7 + . . . from 3rd + more.
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Part 2. Sedimentation of particles

An isolated particle

Two particles

Finite clouds
Spherical cloud
Boycott effect

Suspensions

Fluctuations in velocity of particles
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A spherical cloud

A spherical cloud of particles behaves as a drop of a more viscous
liquid.

Cloud radius R. Particles radius a, density difference ∆ρ, volume
fraction φ, viscosity of suspension µ∗(φ).
Fall speed

2∆ρ a2g

9µ
+

2∆ρ φR2g

9µ

2(µ+ µ∗)

2µ+ 3µ∗

First term from fall of individual particles is much smaller.

Due to edge being ill defined, there is a small loss of particles into
the wake.

This loss produces a toroid. In a very tall tank, breaks up into two
drops, process repeating (Metzner, Nicolas & Guazzelli 2007).
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the wake.

This loss produces a toroid. In a very tall tank, breaks up into two
drops, process repeating (Metzner, Nicolas & Guazzelli 2007).
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Boycott effect

Boycott observed in 1920 that blood settles faster if the test tubes
are inclined to the vertical.

Much used in large scale industrial settlers.

Suspension only settles short vertical distance to lower inclined side
and then slides slowly as a dense suspension to bottom.

Clear fluid released rises rapidly on underside of upper side.

Potential shear-flow instabilities remixing.

http://youtu.be/6I5PNdAHlLI
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Part 2. Sedimentation of particles

An isolated particle

Two particles

Finite clouds

Suspensions
Hindered settling
Richardson-Zaki
Batchelor renormalisation

Summing interactions in a dilute suspension
Divergence in naive sum
Batchelor’s 1972 renormalisation
Polydispersity in sizes

Fluctuations in velocity of particles
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Settling of a uniform suspension

While two spheres settle faster than one, a suspension settles
slower, often much slower.

Called ‘hindered settling’. Due to ‘back flow’ of liquid.

Richardson-Zaki (1954) empirical correlation, for volume fraction φ
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U(φ) = U(0)(1− φ)4.5

Note near maximum packing reduced to 1
20 – like porous media.
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Summing interactions with other particles in a dilute
suspension

Settling velocity of test sphere due to 2nd at distance r

U(r) = U0 + ∆U(r)

with Stokes velocity for isolated sphere U0 = 2∆ρga2/9µ

Far-field form from reflections

∆U(r)/U0 = a
r + a3

r3
1st reflection

+ a4

r4
+ a6

r6
+ . . . 2nd reflection

+ a7

r7
+ a9

r9
+ . . . 3rd reflection

+ . . .
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Divergence in naive sum

Naive pairwise addition of disturbances within large domain r ≤ R,
with n spheres per unit volume

〈∆U〉 =

∫ R

r=2a
U0

(a
r

+ . . .
)
n dV

= O

(
U0φ

R2

a2

)
φ = 4π

3 na3 the volume fraction.

The divergence problem:

I Does mean settling velocity depend on size of domain?

I Or is it an intrinsic property independent of domain?
i.e. is pairwise addition naive?
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Batchelor’s 1972 renormalisation

Batchelor’s renormalisation:

∆U =
(

1 + a2

6 ∇
2
)
u(x)

∣∣
test sphere

+ higher reflections

Pairwise sum of O(U0a
4/r4) higher reflections is convergent

Now 〈u〉everywhere = 0, so

〈u〉test sphere = −11
2 U0φ

〈a26 ∇
2u〉test sphere = 1

2U0φ

〈higher reflections〉test sphere = −1.55U0φ

Hence
〈U〉 = U0(1− 6.55φ)
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Polydispersity in sizes

Batchelor’s result assumes uniform distribution of equal spheres

〈U〉 = U0(1− 6.55φ)

Real suspension have spheres with only nearly equal radii, although
same density.

Hence spheres move past one another, leading to a non-uniform
distribution of pair-separations.

Hence practical result (Salin 1986)

〈U〉 = U0(1− 5.6φ)

22
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Finite clouds
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