Part III. The rheology of suspensions

May 12, 2014

- \triangleright To calculate the flow of complex fluids, need governing equations,
- \blacktriangleright in particular, the constitutive equation relating stress to flow and its history.
- \triangleright Either 'ad hoc', such as Oldroyd-B differential equation and BKZ integral equation,
- \triangleright Or look at microstructure for highly idealised systems and derive their constitutive equations.
- \triangleright Most will be suspensions of small particles in Newtonian viscous solvent.

Micro & macro views Einstein viscosity **Rotations Deformations Interactions** Polymers **Others**

Essential

Micro $\ell \ll L$ Macro

Micro = particle $1 \mu m$ Macro = flow, 1cm

- \triangleright Micro and Macro time scales similar
- \triangleright Need ℓ small for small micro-Reynolds number

$$
\mathit{Re}_\ell = \tfrac{\rho \gamma \ell^2}{\mu} \ll 1,
$$

otherwise possible macro-flow boundary layers $\ll \ell$ But macro-Reynolds number $Re_L = \frac{\rho \gamma L^2}{\mu}$ $\frac{\gamma E^2}{\mu}$ can be large

If $\ell \nless L$, then non-local rheology

Two-scale problem $\ell \ll L$

- \triangleright Solve microstructure tough, must idealise
- Extract macro-observables easy

Here: suspension of particles in Newtonian viscous solvent

1. Macro→micro connection

- \blacktriangleright Particles passively move with macro-flow u
- \blacktriangleright Particles actively rotate, deform $\&$ interact with

macro-shear $∇$ u

both needing $Re \ell \ll 1$.

2. Micro→macro connection

 $Macco = \text{continuum} = \text{average/s}$ mear-out micro details

E.g. average over representative volume V with $\ell \ll V^{1/3} \ll L$

$$
\overline{\sigma} = \frac{1}{V} \int_{V} \sigma \, dV
$$

Also ensemble averaging and homogenisation

To be used in averaged $=$ macro momentum equation

$$
\overline{\rho} \left[\frac{\partial \overline{\mathbf{u}}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}} \right] = \nabla \cdot \overline{\sigma} + \overline{F}
$$

NB micro-Reynolds stresses $(\rho \mathbf{u})' \mathbf{u}'$ small for $Re_\ell \ll 1$.

Write:
$$
\sigma = -\rho l + 2\mu e + \sigma^+
$$

with pressure p , viscosity μ , strain-rate e , and σ^+ non-zero only inside particles.

$$
Average: \quad \overline{\sigma} = -\overline{p}I + 2\mu\overline{e} + \sigma^+
$$

with

$$
\overline{\sigma^+} = \frac{1}{V} \int_V \sigma^+ dV = n \left\langle \int_{\text{particle}} \sigma^+ dV \right\rangle_{\text{types of particle}}
$$

with n number of particles per unit volume

Inside rigid particles $e=0$, so $\sigma^+=\sigma$.

Also
$$
\sigma_{ij} = \partial_k(\sigma_{ik}x_j) - x_j \partial_k \sigma_{ik}
$$
, so ignoring gravity $\partial_k \sigma_{ik} = 0$,

$$
\int_{\text{particle}} \sigma^+ dV = \int_{\text{particle}} \sigma \cdot n \times dA
$$

so only need σ on surface of particle. (Detailed cases soon.)

Hence

$$
\overline{\sigma} = -\overline{p}l + 2\mu\overline{e} + n\int_{\text{particle}} \sigma \cdot n \times dA
$$

Homogenisation: asymptotics for $\ell \ll L$

Easier transport problem to exhibit method

$$
\nabla \cdot k \cdot \nabla T = Q
$$

with k & Q varying on macroscale x and microscale $\xi = x/\epsilon$,

Multiscale asymptotic expansion

$$
\mathcal{T}(x;\epsilon) \sim \mathcal{T}_0(x,\xi) + \epsilon \mathcal{T}_1(x,\xi) + \epsilon^2 \mathcal{T}_2(x,\xi)
$$

Homogenisation 2

 ϵ^{-2} :

$$
\partial_{\xi}k\partial_{\xi}T_0=0
$$

i.e. $T_0=T(x)$

Thus T varies only slowly at leading order, with microscale making small perturbations.

 ϵ^{-1} :

 $\partial_{\xi}k\partial_{\xi}T_1=-\partial_{\xi}k\partial_{x}T_0$

Solution T_1 is linear in forcing $\partial_x T_0$, details depending on $k(\xi)$:

 $T_1(x,\xi) = A(\xi)\partial_x T_0$

 $\epsilon^{\mathbf{0}}$:

 $\partial_{\xi}k\partial_{\xi}T_2 = Q - \partial_{x}k\partial_{x}T_0 - \partial_{\xi}k\partial_{x}T_1 - \partial_{x}k\partial_{\xi}T_1$

Secularity: $\langle \mathsf{RHS} \rangle = 0$ else $\mathcal{T}_2 = O(\xi^2)$ which contradicts asymptoticity. (Periodicity not necessary.) Hence

$$
0 = \langle Q \rangle - \partial_x \langle k \rangle \partial_x T_0 - \partial_x \langle k \frac{\partial A}{\partial \xi} \rangle \partial_x T_0
$$

Hence macro description

$$
\nabla k^* \nabla T = Q^* \qquad \text{with} \quad k^* = \left\langle k + k \frac{\partial A}{\partial \xi} \right\rangle \quad \text{and} \quad Q^* = \langle Q \rangle
$$

Homogenisation 5

NB: [Leading order](#page-1-0) T_0 uniform at microlevel, with therefore no [local heat transport](#page-2-0)

NB: [Micro pro](#page-2-0)blem forced by ∇T_0 . Need to solve

$$
\nabla \cdot k \nabla \cdot T_{\text{micro}} = 0
$$

$$
T_{\text{micro}} \rightarrow x \cdot \nabla T_0
$$

Solution

 $T_{\text{micro}} = (x + \epsilon A) \nabla T_0$

Hence heat flux

$$
\langle q \rangle = \langle k \nabla \, T_{\text{micro}} \rangle = \langle k + \epsilon k \nabla A \rangle \, \nabla \, T_0
$$

Micro & macro views

Separation of length scales Micro \leftrightarrow Macro connections Case of Newtonian solvent Homogenisation

Einstein viscosity

Rotations

Deformations

Interactions

Polymers

Others

Micro & macro views

Einstein viscosity

Simplest, so can show all details.

Highly idealised – many generalisations

- \triangleright Spheres no orientation problems
- \blacktriangleright Rigid no deformation problems
- \triangleright Dilute and Inert no interactions problems

Micro problem

- \blacktriangleright Isolated rigid sphere
- \blacktriangleright force-free and couple-free
- in a general linear shearing flow $\nabla \overline{U}$
- \blacktriangleright Stokes flow

Stokes problem for Einstein viscosity

$$
\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad r > a
$$

$$
0 = -\nabla p + \mu \nabla^2 \mathbf{u} \quad \text{in} \quad r > a
$$

$$
\mathbf{u} = \mathbf{V} + \omega \wedge \mathbf{x} \quad \text{on} \quad r = a \quad \text{with} \quad V, \omega \text{ consts}
$$

$$
\mathbf{u} \rightarrow \overline{U} + \mathbf{x} \cdot \nabla \overline{U} \quad \text{as} \quad r \rightarrow \infty
$$

$$
\mathbf{F} = \int_{r=a} \sigma \cdot n \, dA = 0, \qquad \mathbf{G} = \int_{r=a} \mathbf{x} \wedge \sigma \cdot n \, dA = 0
$$

Split general linear shearing flow $\nabla \overline{U}$ into symmetric strain-rate E [and](#page-16-0) antisymmetric vorticity Ω , i.e.

$$
\mathbf{x}\cdot\nabla\overline{U}=\mathbf{E}\cdot\mathbf{x}+\boldsymbol{\Omega}\wedge\mathbf{x}
$$

NB: Stokes problem is linear and instantaneous

Solution of Stokes problem for Einstein viscosity

$$
\mathsf{F} = 0 \quad \text{gives} \quad \mathsf{V} = \overline{U} \quad \text{i.e. translates with macro flow} \\ \mathsf{G} = 0 \quad \text{gives} \quad \omega = \Omega \quad \text{i.e. rotates with macro flow}
$$

Then

$$
\mathbf{u} = \overline{U} + \mathbf{E} \cdot \mathbf{x} + \Omega \wedge \mathbf{x} - \mathbf{E} \cdot \mathbf{x} \frac{a^5}{r^5} - \mathbf{x} \frac{5(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})}{2r^2} \left(\frac{a^3}{r^3} - \frac{a^5}{r^5}\right)
$$

$$
p = -5\mu \frac{(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})a^3}{r^5}
$$

Evaluate viscous stress on particle

$$
\sigma\!\cdot\! n\big|_{r=a}=\frac{5\mu}{2a}\mathbf{E}\cdot\mathbf{x}
$$

Evaluate particle contribution to macro/average stress

$$
\int_{\text{particle}} \sigma \cdot n \, \mathbf{x} \, dA = 5\mu \mathbf{E} \frac{4\pi}{3} a^3
$$

$$
\overline{\sigma} = -\overline{p}l + 2\mu \mathbf{E} + 5\mu \mathbf{E}\phi
$$
 with volume fraction $\phi = n\frac{4\pi}{3}a^3$

Hence effective viscosity

$$
\mu^* = \mu \left(1 + \frac{5}{2} \phi \right)
$$

- Result independent of type of flow $-$ shear, extensional
- \triangleright Result independent of particle size OK polydisperse
- \blacktriangleright Einstein used another averaging of dissipation which would not give normal stresses with σ : $E = 0$, which arbitrarily cancelled divergent integrals (hydrodynamics is long-ranged)

Micro & macro views

Einstein viscosity

The simplest example Stokes problem Stokes solution Results

Rotations

Deformations

Interactions

Polymers

Others

Rotation of particles – rigid and dilute

Direction of axis $p(t)$, unit vector.

Stokes flow by Oberbeck (1876)

[Micro & macro](#page-0-0) views

[Einstein viscosity](#page-4-0)

[Rotations](#page-4-0)

[Defo](#page-5-0)rmations

[Inte](#page-5-0)ractions

[Polyme](#page-9-0)rs

[Other](#page-12-0)s

Micro→macro link: stress

Microstructural evolution equation

$$
\frac{D\mathbf{p}}{Dt} = \Omega \wedge \mathbf{p} + \frac{r^2 - 1}{r^2 + 1} \left[\mathbf{E} \cdot \mathbf{p} - \mathbf{p} (\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \right]
$$

(Last term to keep p unit, so can discard sometimes.) Straining less efficient at rotation by $\frac{r^2-1}{r^2+1}$ $\frac{r^2-1}{r^2+1}$.

 $\overline{\sigma} = -\overline{p}l + 2\mu \mathbf{E} + 2\mu \phi \left[A(\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \mathbf{p} \mathbf{p} + B(\mathbf{p} \mathbf{p} \cdot \mathbf{E} + \mathbf{E} \cdot \mathbf{p} \mathbf{p}) + C \mathbf{E} \right]$

with A, B, C material constants depending on shape but not size

$$
r \rightarrow \infty \quad \frac{r^2}{2(\ln 2r - \frac{3}{2})} \quad \frac{6 \ln 2r - 11}{r^2} \quad 2
$$
\n
$$
r \rightarrow 0 \quad \frac{10}{3\pi r} \quad -\frac{8}{3\pi r} \quad \frac{8}{3\pi r}
$$

Rotation in uni-axial straining

$$
\mathbf{U}=E(x,-\tfrac{1}{2}y,-\tfrac{1}{2}z)
$$

Aligns with inflow direction \rightarrow maximum dissipation

Effective extensional viscosity for rods

$$
\mu_{\rm ext}^* = \mu \left(1 + \phi \frac{r^2}{3(\ln 2r - 1.5)} \right)
$$

Large at $\phi \ll 1$ if $r \gg 1$. Now $\phi = \frac{4\pi}{3}ab^2$ and $r = \frac{a}{b}$, so

$$
\mu^*_{\rm ext}=\mu\left(1+\frac{4\pi n a^3}{9(\ln 2r-1.5)}\right)
$$

so same as sphere of radius a its largest dimension(except for factor 1.2 (ln $2r - 1.5$)).

Hence 5ppm of PEO can have a big effect in drag reduction.

Dilute requires $na^3 \ll 1$, but extension by Batchelor to semi-dilute $\phi \ll 1 \ll \phi r^2$

$$
\mu^*_{\rm ext}=\mu\left(1+\frac{4\pi n a^3}{9\ln\phi^{-1/2}}\right)
$$

$\mathbf{U} = (\gamma y, 0, 0)$

$$
\mu^*_{\rm ext}=\mu\left(1+\phi\frac{10}{3\pi r}\right)=\mu\left(1+\frac{10nb^3}{9}\right)
$$

where for disks b is the largest dimension (always the largest for Stokes flow).

No semi-dilute theory, yet.

Rotates to flow direction \rightarrow minimum dissipation

Rotates to lie in flow \rightarrow minimum dissipation

Both Tumble: flip in $1/\gamma$, then align for r/γ ($\delta\theta = 1/r$ with $\dot{\theta} = \gamma/r^2$

Effective shear viscosity

Jeffery orbits (1922)

$$
\dot{\phi} = \frac{\gamma}{r^2+1} (r^2 \cos^2 \phi + \sin^2 \phi)
$$

\n
$$
\dot{\theta} = \frac{\gamma(r^2-1)}{4(r^2+1)} \sin 2\theta \sin 2\phi
$$

Solution with orbit constant C.

$$
\tan \phi = r \tan \omega t, \quad \omega = \frac{\gamma r}{r^2 + 1}, \quad \tan \theta = Cr(r^2 \cos^2 \phi + \sin^2 \phi)^{-1/2}
$$

Effective shear viscosity Leal & H (1971)

$$
\mu^*_{\text{shear}} = \mu \left(1 + \phi \begin{cases} 0.32r / \ln r & \text{rods} \\ 3.1 & \text{disks} \end{cases} \right)
$$

numerical coefficients depend on distribution across orbits, C.

Remarks

Alignment gives $\mu^*_{\text{shear}} \ll \mu^*_{\text{ext}}$ and this material anisotropy will lead to anisotropy of macro flow.

Important to Turbulent Drag Reduction

Three measures of concentration of rods

$$
\begin{cases}\n\phi r^2 \doteq n a^3 & \text{for } \mu_{\text{ext}}^* \\
\phi r \doteq n a^2 b & \text{for } \mu_{\text{shear}}^* \\
\phi \doteq n a b^2 & \text{for permeability}\n\end{cases}
$$

Rotary diffusivity
$$
D_{\text{rot}} = \frac{kT}{8\pi\mu a^3}
$$
 for spheres,

$$
kT / \frac{8\pi\mu a^2}{3(\ln 2r - 1.5)}
$$
 rods, $kT / \frac{8}{3}\mu b^3$ disks

(NB largest dimension, again) After flow is switched off, particles randomise orientation in time $1/6D \sim 1$ second for $1 \mu m$ in water.

State of alignment: probability density $P(\mathbf{p},t)$ in orientation space = unit sphere $|\mathbf{p}| = 1$. Fokker-Plank equation

$$
\frac{\partial P}{\partial t} + \nabla \cdot (\dot{\mathbf{p}}P) = D_{\rm rot} \nabla^2 P
$$

 $\dot{\mathbf{p}}(\mathbf{p})$ earlier deterministic.

Extensional and shear viscosities

Average stress over distribution P

Averaged stress

$$
\sigma = -\rho I + 2\mu E + 2\mu \phi [AE : \langle \mathbf{ppp} \rangle + B(E \cdot \langle \mathbf{pp} \rangle + \langle \mathbf{pp} \rangle \cdot E) + CE + FD_{\rm rot} \langle \mathbf{pp} \rangle]
$$

Last FD_{rot} term is entropic stress. Extra material constant $F=3r^2/(\ln 2r-0.5)$ for rods and $12/\pi r$ for disks.

with averaging:
$$
\langle pp \rangle = \int_{|\mathbf{p}|=1} \mathbf{p} \mathbf{p} P \, d\rho
$$

Solve Fokker-Plank: numerical, weak and strong Brownian rotations

The closure problem

 \triangleright Second moment of Fokker-Plank equation

$$
\begin{aligned} &\frac{D}{Dt}\langle {\bf pp}\rangle-\Omega\cdot\langle {\bf pp}\rangle\langle {\bf pp}\rangle\cdot\Omega\\ &=\tfrac{r^2-1}{r^2+1}\left[E\cdot\langle {\bf pp}\rangle+\langle {\bf pp}\rangle\cdot E-2\langle {\bf pppp}\rangle:E\right]-6D_{\rm rot}\left[\langle {\bf pp}\rangle-\tfrac{1}{3}I\right] \end{aligned}
$$

Hence this and stress need $\langle \text{pppp} \rangle$, so an infinite hierarchy.

 \blacktriangleright Simple 'ad hoc' closure

$$
\langle \mathbf{pppp} \rangle : E = \langle \mathbf{pp} \rangle \langle \mathbf{pp} \rangle : E
$$

 \triangleright Better: correct in weak and strong limits

 $\langle \mathsf{pppp} \rangle : E = \frac{1}{5} \left[6 \langle \mathsf{pp} \rangle \cdot E \cdot \langle \mathsf{pp} \rangle - \langle \mathsf{pp} \rangle \langle \mathsf{pp} \rangle : E - 2I(\langle \mathsf{pp} \rangle^2 : E - \langle \mathsf{pp} \rangle : E) \right]$

 \triangleright New idea Brownian fields: simulate many random walks in orientation space for each point of the complex flow.

Micro & macro views

Einstein viscosity

Rotations

Rotation of particles Macro stress Uni-axial straining Extensional viscosity rods Extensional viscosity disks Simple shear Shear viscosity Anisotropy Brownian rotations Macro stress Viscosities Closures

Deformations

Interactions

Emulsions - deformable microstructure

[Reviews: Ann.](#page-0-0) Rev. Fluid Mech. Rallison (1984), Stone (1994)

- ► [Dilute](#page-4-0) single drop, volume $\frac{4\pi}{3}a^3$
- \triangleright T = surface tension (in rheology σ and γ not possible)
- [Newt](#page-6-0)[onian vi](#page-5-0)scous drop μ_{int} , solvent μ_{ext}

[Irreversibl](#page-8-0)e reduction is size to $a_* = T/\mu_{\rm ext} E$, as coalescence very slow.

Micro & macro views Einstein viscosity **Rotations Deformations Interactions Polymers Others**

Rupture in shear flow

Experiments: de Bruijn (1989) (=own), Grace (1982) Theories: Barthes-Biesel (1972), Rallison (1981), Hinch & Acrivos (1980)

$$
\mu_{\rm ext}E > \frac{T}{a}\begin{cases} 0.54\left(\mu_{\rm ext}/\mu_{\rm int}\right)^{2/3} & \text{simple shear} \\ 0.14\left(\mu_{\rm ext}/\mu_{\rm int}\right)^{1/6} & \text{extension} \end{cases}
$$

but tip-streaming with mobile surfactants (makes rigid end-cap)

$$
\mu_{\rm ext} E > \frac{T}{a} 0.56
$$

- If internal very viscous ($\mu_{int} \gg \mu_{ext}$),
	- \blacktriangleright then rotates with vorticity.
	- \triangleright rotating with vorticity, sees alternative stretching and compression,
	- \blacktriangleright hence deforms little.
- If internal fairly viscous $(\mu_{int} \gtrsim 3\mu_{ext})$,
	- \blacktriangleright then deforms more,
	- \triangleright if deformed, rotates more slowly in stretching quadrant,
	- \triangleright if more deformed, rotates more slowly, so deforms even more, etc etc
- ► until can rupture when μ_{int} < 3 μ_{ext}

Theoretical studies: small deformations

Small ellipsoidal deformation

$$
r = a(1 + \mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x} + \text{higher orders})
$$

Stokes flow with help of computerised algebra manipulator

$$
\frac{D\mathbf{A}}{Dt} - \Omega \cdot \mathbf{A} + \mathbf{A} \cdot \Omega = 2k_1 \mathbf{E} + k_5 (\mathbf{A} \cdot \mathbf{E} + \mathbf{E} \cdot \mathbf{A}) + \dots - \frac{T}{\mu_{\text{ext}} a} (k_2 \mathbf{A} + k_6 (\mathbf{A} \cdot \mathbf{A}) + \dots)
$$

$$
\sigma = -\rho I + 2\mu_{ext}\mathbf{E} + 2\mu_{ext}\phi \left[k_3\mathbf{E} + k_7(\mathbf{A}\cdot\mathbf{E} + \mathbf{E}\cdot\mathbf{A}) + \dots \right. \\ - \frac{7}{\mu_{ext}a}(k_4\mathbf{A} + k_8(\mathbf{A}\cdot\mathbf{A}) + \dots \right]
$$

with k_n depending on viscosity ratio, k_1 inefficiency of rotating by straining $\lambda = \mu_{int}/\mu_{ext}$

$$
k_1 = \frac{5}{2(2\lambda+3)}, \qquad k_2 = \frac{40(\lambda+1)}{(2\lambda+3)(19\lambda+16)}
$$

$$
k_3 = \frac{5(\lambda-1)}{3(2\lambda+3)}, \qquad k_4 = \frac{4}{2\lambda+3}
$$

Theoretical studies: small deformations 2

Rheology before rupture

Small strain-hardening, small shear-thinning, $N_1 > 0$, $N_2 < 0$. Repeated rupture leaves $\mu^* \cong \text{constant}$. Einstein: independent of size of particle, just depends on ϕ .

Form of constitutive equation

$$
\frac{d}{dt}(\text{state}) \& \sigma \qquad \text{linear in} \quad \mathbf{E} \quad \& \quad \frac{T}{\mu_{\text{ext}}a}
$$

Numerical studies: boundary integral method

Electrical double layer on isolated sphere

– another deformable microstructure

- \blacktriangleright Charged colloidal particle.
- \blacktriangleright Solvent ions dissociate,
- \triangleright [for](#page-9-0)ming neutralising cloud around particle.
- ► [Scr](#page-9-0)[e](#page-10-0)ening distance Debye κ^{-1} , with $\kappa^2 = \sum_i n_i z_i^2 e^2 / \epsilon kT$.
- \blacktriangleright [In flo](#page-11-0)w, cloud distorts a little
- $\triangleright \longrightarrow$ very small change in Einstein $\frac{5}{2}$.

Flexible thread – deformable microstructure

Position $x(s, t)$, arclength s, tension $T(s, t)$

$$
\dot{\mathbf{x}} = \mathbf{x} \cdot \nabla \mathbf{U} + T'\mathbf{x}' + \frac{1}{2}T\mathbf{x}''
$$
\nwith $T'' - \frac{1}{2}(\mathbf{x}'')^2 T = -\mathbf{x}' \cdot \nabla \mathbf{U} \cdot \mathbf{x}'$ and $T = 0$ at ends

Snap straight

H 76

Micro & macro views

Einstein viscosity

Rotations

Deformations

Emulsions Rupture **Theories** Numerical Flexible thread Double layer

Interactions

Polymers

Others

Micro & macro views

Einstein viscosity

Rotations

Deformations

Interactions

Polymers

Others

Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged Rigid spheres : two bad ideas

Dilute – between pairs (mostly)

Reversible (spheres $+$ Stokes flow) \rightarrow return to original streamlines But minimum separation is $\frac{1}{2}$ 10^{-4} radius \rightarrow sensitive to roughness (typically 1%) when do not return to original streamlines.

Summing dilute interactions

Divergent integral from ∇ u $\sim \frac{1}{\epsilon}$ $r³$ [Need](#page-4-0) renormalisation: Batchelor or mean-field hierarchy.

$$
\mu^* = \mu \left[1 + 2.5\phi + 6.0\phi^2 \right]
$$

- \triangleright 6.0 for strong Brownian motion
- \triangleright 7.6 for strong extensional flow
- \triangleright ≅ 5 for strong shear flow, depends on distribution on closed orbits

Small strain-hardening, small shear-thinning

Test of Batchelor ϕ^2 result

$$
\mu^* = \mu \left[1 + 2.5\phi + 6.0\phi^2 \right]
$$

Russel, Saville, Schowalter 1989

Effective viscosities in shear flow

Russel, Saville, Schowalter 1989

Stokesian Dynamics

– (mostly) pairwise additive hydrodynamics

Jamming/locking – clusters across the compressive quadrant

Brady & Bossis (1985)

Fragile clusters if include soft repulsion or Brownian motion

Stokesian Dynamics 2

'Stokesian Dynamics' Brady & Bossis Ann. Rev. Fluid Mech. (1988)

Electrical double-layer interactions

Experiments – concentrated

Stress as function of shear-rate at different pH. Suspension of 0.33 μ m aluminium particles at $\phi = 0.3$

Ducerf (Grenoble PhD 1992)

Note yield stress very sensitive to pH

Interactions – van der Waals

Attraction \rightarrow aggregation

 \rightarrow gel (conc) or suspension of flocs (dilute)

Possible model of size of flocs R

Number of particles in floc $N = \left(\frac{R}{2}\right)^{N}$ a \int_{a}^{d} , d = 2.3?

$$
\blacktriangleright
$$
 Volume fraction of flocs $\phi_{\text{floc}} = \phi \left(\frac{R}{a} \right)^3$

- \triangleright Collision between two flocs
- Hydro force $6\pi\mu R\gamma R =$ Bond force $F_b \times$ number of bonds $N_{\overline{R}}^{\underline{a}}$

$$
\blacktriangleright \text{ Hence } \phi_{\text{floc}} = \phi \frac{F_b}{6\pi \mu a^2 \gamma}
$$

So strong shear-thinning and yields stress $\phi F_b/a^2$. Breakdown of structure in rheology $\mu(\gamma)$

Interactions – fibres

Cannot pack with random orientation if

 $\phi r > 1$

leads to spontaneous alignment, nematic phase transition

Note extensional viscosity $\propto \phi r^2$ can be big while random, but shear viscosity $\propto \phi r$ is only big if aligned.

Disk not random if $\phi \frac{1}{r} > 1$.

Interactions – drops

- \triangleright No jamming/locking of drops (cf rigid spheres)
	- \triangleright small deformation avoid geometric frustration
	- \blacktriangleright slippery particle, no co-rotation problems
- \triangleright Faster flow \rightarrow more deformed \rightarrow wider gaps in collisions
- \triangleright Deformed shape has lower collision cross-section so 'dilute' at $\phi = 0.3$, blood works!

Numerical studies: boundary integral method

 $\phi = 0.3$, $Ca = \mu_{ext} \gamma a / T = 0.3 \lambda = 1$, $\gamma t = 10$, 12 drops, each 320 triangles.

Numerical studies: boundary integral method 4

[Reduced cr](#page-4-0)oss-section for collisions

into flow

Micro & macro views

Einstein viscosity

Rotations

Deformations

Interactions

Hydrodynamic **Dilute** Experiments Numerical Electrical double-layer Dilute Concentrated van der Waals Fibres Drops Numerical

Micro & macro views

Einstein viscosity

Rotations

Deformations

Interactions

Polymers

Others

Bead-and-Spring model of isolated polymer chain 2

[Addin](#page-4-0)g Brownian motion of the beads: $A = \langle RR \rangle$

$$
\overline{A} \equiv \frac{DA}{Dt} - A \cdot \nabla U - \nabla U^{T} \cdot A = -\frac{1}{\tau} \left(A - \frac{Nb^{2}}{3}I \right)
$$

$$
\sigma = -pl + 2\mu E + n\kappa A
$$

[with](#page-12-0) n number of chains per unit volume.

[– O](#page-16-0)ldroyd-B constitutive equation with UCD time derivative \bar{A}

Bead-and-Spring model of isolated polymer chain

– simplest, only gross distortion, Kuhn & Kuhn 1945, Kramers 1946

Hence

$$
\dot{R} = R \cdot \nabla U - \frac{1}{2\tau} R \quad \text{with} \quad \tau = 0.8kT/\mu (N^{1/2}b)^3
$$

Rheological properties

Shear

$$
\blacktriangleright \mu = \text{constant}, \ N_1 \propto \gamma^2, \ N_2 = 0.
$$

 \blacktriangleright Distortion xy: $a\gamma\tau \times a$

Extension

 \triangleright For TDR: small shear and large extensional viscosities

Refinements

- 1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56 with pre-averaged hydrodynamics
- 2. (boring) Polydisperse molecular weights
- 3. (important) Finite extensibility to stop infinite growth $\propto e^{(2E-\frac{1}{\tau})t}$
	- \triangleright Nonlinear spring force inverse Langevin law

$$
F(R) = \frac{kT}{b} \mathcal{L}^{-1} \left(\frac{R}{Nb} \right) \quad \text{with} \quad \mathcal{L}(x) = \coth x - \frac{1}{x}
$$

 \blacktriangleright F.E.N.E approximation

$$
F(R) = \frac{kT}{Nb^2} \frac{R}{1 - R^2/L^2}
$$
 with fully extended length $L = Nb$

 \blacktriangleright FENE-P closure

$$
\left\langle RR/(1-R^2/L^2)\right\rangle = \left\langle RR\right\rangle/(1-\left\langle R^2\right\rangle/L^2)
$$

but "molecular individualism"

More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size $6\pi\mu(a \rightarrow R)$

$$
\mu_{\rm ext} = 1 + nL^3
$$
 and hysteresis

5. Rotation of the beads – simple shear not so simple

inefficiency of straining

FENE-P constitutive equation

$$
\overline{A} = -\frac{1}{\tau} \frac{L^2}{L^2 - \text{trace } A} \left(A - \frac{a^2}{3} I \right)
$$

$$
\sigma = -\rho I + 2\mu E + n\kappa \frac{L^2}{L^2 - \text{trace } A} A
$$

One more refinement

6. Dissipative stress – nonlinear internal modes Simulations show growing stretched segments

segment length
$$
\propto \frac{R^2}{L}
$$
, number $\propto \frac{L^2}{R^2}$, dissipation $\propto \frac{R^4}{L}$

$$
\sigma = -pl + 2\mu \left(1 + n \frac{(\text{trace } A)^2}{L}\right)E + n\kappa \frac{L^2}{L^2 - \text{trace } A}A
$$

Good for contraction flows

Simulation of chain with $N = 100$ in uni-axial straining motion at strains $Et = 0.8, 1.6, 2.4$.

 \blacktriangleright Growing stretched segments

- \blacktriangleright t = 0: 1D random walk, N steps of ± 1
- \blacktriangleright t > 0: floppy inextensible string in $u = Ex$
- \blacktriangleright arclengths satisfy

 \blacktriangleright Large gobble small

Kinks model 2

Number of segments $n(t)$ **Scalings**

Distribution of lengths $\ell(t)$ scaled by e^{2Et}

$$
\begin{cases}\nn\ell = N \\
\sqrt{n}\ell = R = \sqrt{N}e^{Et} \\
\end{cases} \longrightarrow \begin{cases}\nn = Ne^{-2Et} \\
\ell = e^{2Et}\n\end{cases}
$$

Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen & Gupta 1991 plotted as viscosity as function of time

Replotted a function of strain $=$ strain-rate \times time

Improved algorithms for Brownian simulations

- 1. Mid-point time-stepping avoids evaluating $\nabla \cdot \mathbf{D}$ Keep random force fixed in time-step, but vary friction
- 2. Replace very stiff (fast) bonds with rigid $+$ correction potential

$$
-k\mathcal{T}\nabla \ln \sqrt{\det M^{-1}} \quad \text{with} \quad M^{-1\,ab} = \sum_{i \text{ beads}} m_i^{-1} \frac{\partial g^a}{\partial \mathbf{x}_i} \cdot \frac{\partial g^b}{\partial \mathbf{x}_i}
$$

where rigid constraints are $g^a(\mathsf{x}_1,\ldots,\mathsf{x}_N)=0$ and stiff spring energy $\frac{1}{2}|\nabla g^a|^2$

3. Stress by subtraction of large $\Delta t^{-1/2}$ term with zero average

$$
\frac{1}{2}(x^n + x^{n+1})f^n \longrightarrow \frac{1}{2}\Delta x^n f^n
$$

Grassia, Nitsche & H 95

Relaxation of fully stretched chain

Constitutive equation – options

$$
\overline{A} = -\frac{1}{h\tau}f(A - I)
$$

$$
\sigma = -pl + 2\mu E + GfA
$$

- \triangleright Oldroyd B $f = 1$
- FENE-P $f = L^2/(L^2 \text{trace } A)$
- \blacktriangleright Nonlinear bead friction $h = \sqrt{\text{trace}A/3}$
- \blacktriangleright New form of stress

$$
\sigma = -pl + 2\mu E + 2\mu_d(A:E)A + G\sqrt{\text{trace }AA}
$$

- \blacktriangleright Last term for finite stress when fully stretched
- ► μ_d term $(\propto N^{-1/2})$ for enhanced dissipation

Good for positive pressure drops and large upstream vortices in contraction flows.

Reptation model of De Gennes 1971 – often reformulated

t

Chain moves in tube defined by topological constraints from other chains.

Chain disengages from tube by diffusing along its length

$$
\tau_D = \frac{L^2}{D = kT/6\pi\mu L} \propto M^3
$$

$$
\text{Modulus } G = nkT \longrightarrow \mu^* = G\tau_D \propto M^3 \quad \text{(expts } M^{3.4} \text{)}
$$

Diffusion out of tube

At later time:

Fraction of original tube surviving

$$
\sum_n \frac{1}{n^2} e^{-n^2 t/\tau_D}
$$

Diffusion gives linear viscoelasticity
$$
G' \propto \omega^{1/2}
$$

Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

Unit segments of the tube **u** aligned by flow:

 $u \rightarrow Au$ with Finger tensor A

Stress

$$
\sigma(t) = n \int_0^\infty \sum_{p} \frac{1}{p^2} e^{-p^2 s/\tau_D} \quad N_{\text{segments}} \frac{3kT}{a} a \left\langle \frac{\mathbf{A}^* \mathbf{u} \mathbf{A}^* \mathbf{u}}{|\mathbf{A}^* \mathbf{u}|^2} \right\rangle ds
$$

surving tube segment tension

with relative deformation $\mathbf{A}^* = A(t)A^{-1}(t-s).$ A BKZ integral constitutive equation Problem maximum in shear stress

Chain trapped in a fast shearing lattice

Refinements

Chain returns in Rouse time to natural length $→$ loss of segments

- 2. Chain fluctuations
- 3. Other chains reptate \rightarrow release topological constraints "Double reptation" of Des Cloiseaux 1990. bimodal blends 2 & 3 give $\mu \propto M^{3.4}$
- 4. Advected constraint release Marrucci 1996

$$
\tfrac{1}{\tau_D} \longrightarrow \tfrac{1}{\tau_D} + \beta \nabla u : \langle uu \rangle
$$

5. Flow changes tube volume or cross-section

Lattice for other chains

central section pulling chain out of arms \rightarrow high dissipative stresses

Ianniruberto, Marrucci & H 98

Branched polymers $-$ typical in industry

Very difficult to pull branches into central tube $\mu \propto \exp(M_{\text{arm}}/M_{\text{entangle}})$ Pom-Pom model of Tom McLeish and Ron Larson 1999

 $\sigma = g \lambda^2$ S Orientation: $\mathbf{S} = \mathbf{B}/\text{trace}\mathbf{B}$ $\qquad \qquad \nabla = -\frac{1}{\tau_0}(\mathbf{B} - \mathbf{I})$ Stretch: $\dot{\lambda} = \nabla u : \mathbf{S} - \frac{1}{\tau_S}(\lambda - 1)$ while $\lambda < \lambda_{\text{max}}$

with $\tau_O=\tau_\text{arm}(M_C/M_E)^3$ and $\tau_S=\tau_\text{arm}(M_C/M_E)^2$ and $\tau_{\rm arm} \cong \exp(M_{\rm arm}/M_E)$ where $M_C = M_{\rm crossbar}$ and $M_E = M_{\rm entanglement}$.

Test of Pom-Pom model – Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension. Predict: Transient Shear and Transient Normal Stress

IUPAC-A data Müntedt & Laun (1979)

Other microstructural studies

- \blacktriangleright Electro- and Magneto--rheological fluids
- \blacktriangleright Associating polymers
- \blacktriangleright Surfactants micells
- \blacktriangleright Aging materials
- \triangleright GENERIC
- \triangleright Modelling 'Molecular individualism' and closure problems

Polymers

Polymers

Bead-and-spring model [Refinements](#page-16-0)

[FENE](#page-17-0)-P constitutive equation

[Unravelling a polymer](#page-17-0) chain

[Kinks model](#page-18-0)

[Brow](#page-18-0)nian simulations

[Entangled polym](#page-19-0)ers [rheology](#page-19-0)

[R](#page-20-0)efinements

[pom-](#page-20-0)pom

Outline

