Part Il continued — more details on general issues Finite Elements

Last time — Finite Differences Good for engineering problems with complex geometries

Higher orders — central, 1-sided, non-equispaced — 'just’ need to triangulate domain

Compact 4th order Poisson solver Good for elliptic, OK for parabolic, poor for hyperbolic

Good for accuracy & conservative

Upwinding
Grids — non-Cartesian, stretched, staggered Poor difficult programming on unstructured grid
Conservative Poor no efficient Poisson solver on unstructured grid
This time — Finite Elements Poor difficult presenting results on unstructured grid
Use packages, do not program yourself
Finite Elements = Two ideas Representations in 1D
a. Constant elements
1. Simple representation for unknown function over the finite f(x) = fi
element

. in xi_1 < x <X
— not point data of FD

: . ) b. Linear elements
2. Weak formulation of the governing equations

— variational statement F(x) = f Xj — X L
=fi—1 i
Xi — Xi—1 Xi — Xij—1

X — Xj—1

in xj_1 < x<x




More representations in 1D basis functions

First map element to unit interval In all cases, write:
f(x) = fidi(x)

= Xj_ P — Xj_ for0<¢<1
X&) = %1406 =x-1)8 for0<g< f; amplitudes ¢;(x) basis functions, nonzero only in a few elements

c. Quadratic elements For the constant elements, the basis functions are

1 i—1 < i
F(x) = fioa(1 = (1 —26) + f_146(1 — ) + il (26 — 1) ¢f(X>={ 0 otherise

NB: f’ discontinuous at boundaries

d. Cubic elements
Obvious generalisation, but better:

Flx) = fia(1—82(1+28)+f 1 (1—€)>%
+HE(B - 28) + FE(1-¢),

Now only f” discontinuous at boundaries — see splines later

Basis functions for linear elements Basis functions for cubic elements

)2 (s —3x: .
(Xi41—x)° (Xip1+2x—3x;) in X S X < Xip1

X —Xji—1 . (x11—x7)3
—— in xi_1 < x<Xx 7 e 1)2(3x—2x—x: .
Xj — Xj_1 ! ! ¢i(X) = (x Xlitl;(—?’;l,j? Xi-1) in xj_1 <x<Xxj
Ax) — Xiy1 — X . .
di(x) = x-l+1 —2 in xS x<xi 0 otherwise,
i+1 i . (x—x)(xig1—x)% -
0 otherwise, Thraox? X < x < Xj41
7 2
. . : = X—=Xj ) (X—=Xj— :
with obvious modifications for the end elements. %i(x) e (Xi),(xi_l)zl) N xi—1 < x <X
0 otherwise.
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Representations in 2D

Mostly triangles, sometimes rectangles

a. Constant elements

f(x) =f; in each triangle i.
b. Linear elements Need ¢12(x) vanishing on two vertices, unity on
third

(x =x1)(y2 = 1) — (e —x1)(y — »1)
x3—x1)(y2 —y1) — (2 —x1)(y3 —y1)

l1a(x,y) = (

Then
f(x) = fila3(x) + fl31(x) + fl12(x).

Representation continuous over domain

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant + 2 linear + 3 quadratic + 4 cubic.

Can fit f and Vf at vertices, plus value in centre = the ‘bubble’.

e. Basis functions
In all cases, write:

f(x) = figi(x)

For linear elements, ¢; is non-zero at only one vertex, vanishing on
opposite sides of triangles, to form a several-sided pyramid.

Local nature — sparse coupling matrices for PDEs

more representations in 2D

c. Quadratic elements Values at vertices and mid-points

f(x) = flaz(x)(2023(x) — 1)
+fl31(x)(2031(x) — 1)
+f3€12(x)(2€12(x) — 1)
—i—f234€12(x)€31(x) + f314€23(x)€12(x) + f124€31(x)€23(x).
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more representations in 2D

f. Rectangles
Obvious constant elements

Bilinear, taking values at vertices
f(x) = hén+ H(1—En+ BE(L —n) + (1 - &)(1 —n).
Continuous over domain.

Biquadratic — sum of 9 terms, each product of quadratic in
separate coordinates, taking values at vertices and midpoints.

Continuous and continuous tangential derivative at boundaries.



Variational statement of Poisson problem

V2f =p in volume V
with boundary condition, say f =g on surface S,

with p(x) and g(x) given.

Rayleigh-Ritz variational formulation: out of all those functions

f(x) that satisfy BCs, the one that minimises

I(f):/‘/<i|Vf|2+pf> dv

also satisfies the Poisson problem.

Details in 1D

d?f
2= ina<x<b, with f(a) =A and f(b) = B,

where p(x), A and B given.
Divide [a, b] into N equal segments h = (b — a)/N.

Use linear finite elements with basis functions

Unknown f(x) represented (BCs built in)

N—-1
F(x) = Ado(x) + Bon(x) + > fii(x)
i=1

Substitute FE representation

F(x) = figi(x)
Then

) =536 [ Voi-ve; +305 [ oo
ij S—— i S——

global stiffness Kj; forcing r;

Minimise over f;
KU@ +r,=0.

With these f;, the f satisfies

_/vf.v¢i:/p¢, for all i,

i.e. satisfy PDE in all (finite) ¢; directions.
The weak formulation of the PDE (f can be non-C?)

more details in 1D

At interior pts

2/h if i =,
KU:/V¢;-V¢j: —1/h ifi=j+1,
0 otherwise.

by Voi =0,+1,-1,0
Take given p(x) to be piecewise constant, then forcing

r= /P(X)¢i = hp;.

So equation governing unknown amplitudes f; becomes

1
Z(—f,-,1+2f,-—f,~+1)+hp,~:0 fori=1,2,...,N—1,

— same for the point values in the finite difference approach.



more details in 1D
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Remark If evaluate r; more accurately
h
pl + O(h®).

= [ 0000 = i+ 1,

So obtain f; to O(h*).
Yet f(x) still only O(h?) in interior of elements.

Remark For non-equispaced intervals, obtain

1
(fi - fi+1) +
i+1

1
—fi1+f;
h-l( 1+ )+h

2

[—

i.e. FE approach naturally conservative.



