Resumé of lecture 1

Driven Cavity, with $u = \sin^2 \pi x$ on top. Streamfunction-vorticity formulation:

1. At each t given ω , find ψ :

$$\nabla^2 \psi = -\omega$$

with $\psi = 0$ all sides.

2. With ω and now ψ known at t, find ω at $t + \Delta t$:

$$\frac{\partial \omega}{\partial t} = -\frac{\partial (\psi, \omega)}{\partial (x, y)} + \frac{1}{Re} \nabla^2 \omega$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct

Physics of the Navier-Stokes equation, corner singularity, non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of question (physics and maths).

Approximation of derivatives

Forward differencing
$$f'_i = \frac{f_{i+1} - f_i}{\Delta x} + O(\Delta x)$$

Backward differencing $f'_i = \frac{f_i - f_{i-1}}{\Delta x} - O(\Delta x)$
Central differencing $f'_i = \frac{f_{i+1} - f_{i-1}}{2\Delta x} + O(\Delta x^2)$

Curvature error cancels in central difference

2.2 Finite differences – simple

Later, Part II on more sophisticated finite differences, as well as finite elements and spectral representation.

Finite computer \rightarrow finite representation: spot data

$$\omega_{ij}^n \approx \omega(x = i\Delta x, y = j\Delta x, t = n\Delta t).$$

for
$$i = 0, 1, ..., N$$
, $j = 0, 1, ..., N$ and $n = 0, 1, 2...$

Square mesh with $\Delta y = \Delta x$.

Second derivative f''

$$f''_{i} \approx \frac{\left(f'_{i+\frac{1}{2}} \approx \frac{f_{i+1} - f_{i}}{\Delta x}\right) - \left(f'_{i-\frac{1}{2}} \approx \frac{f_{i} - f_{i-1}}{\Delta x}\right)}{\Delta x}$$

$$= \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}} + O(\Delta x^{2}).$$

Note

$$f''_{i} \neq (f'_{i})' = \frac{f_{i+2} - 2f_{i} + f_{i-2}}{4\Delta x^{2}}.$$

- error 4 times as large.

Also

$$(ab)_i' \neq a_i'b_i + a_ib_i'$$
.

Local error analysis

by Taylor series

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' + \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$

Hence

$$f_{i+1} - 2f_i + f_{i-1} = \Delta x^2 f_i'' + \frac{1}{12} \Delta x^4 f_i''''$$

Try to use central differences, so $O(\Delta x^2)$ in spatial differentiation.

Forward time differencing adequate for driven cavity – see later.

2.3 Poisson problem: $\nabla^2 \psi = -\omega$

At interior points, $i=1 \rightarrow \mathit{N}-1, j=1 \rightarrow \mathit{N}-1$, solve

$$\frac{1}{\Delta x^2} \begin{pmatrix} 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \psi_{ij} = -\omega_{ij},$$

with boundary conditions

$$\psi = 0$$
 for $i = 0 \& N$, $j = 0 \rightarrow N$ and for $j = 0 \& N$, $i = 0 \rightarrow N$.

Large problem in linear algebra 90% CPU of most programs – worth a good method

Laplacian

$$(\nabla^2 \psi)_{ij} \approx \frac{\psi_{i+1j} - 2\psi_{ij} + \psi_{i-1j}}{\Delta x^2} + \frac{\psi_{ij+1} - 2\psi_{ij} + \psi_{ij-1}}{\Delta x^2},$$

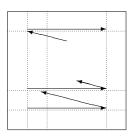
written with a 'numerical molecule'

$$pprox rac{1}{\Delta x^2} egin{pmatrix} & 1 & \ 1 & -4 & 1 \ 1 & 1 \end{pmatrix} \psi_{ij}.$$

Simplest – Gauss-Seidel

Sweep through interior

$$j=1: i=1 \rightarrow N-1$$
 $j=2: i=1 \rightarrow N-1$
 \downarrow
 $j=N-1: i=1 \rightarrow N-1$



and then repeat.

$$\psi_{ij}^{\text{new}} = \frac{1}{4} \left(\psi_{i+1j}^{\text{old}} + \psi_{i-1j}^{\text{new}} + \psi_{ij+1}^{\text{old}} + \psi_{ij-1}^{\text{new}} + \Delta x^2 \omega_{ij} \right).$$

To converge need $O(N^2)$ iterations/compete sweeps $\to O(N^4)$ operations.

A little better – Successive Over Relaxation

 $\psi_{ij}^{\text{new}} = (1 - r)\psi_{ij}^{\text{old}} + r\{\text{above expression for } \psi_{ij}^{\text{new}}\}.$

0 < r < 1 under-relax

r = 1 Gauss-Seidel

1 < r < 2 over-relax

 $r \ge 2$ unstable

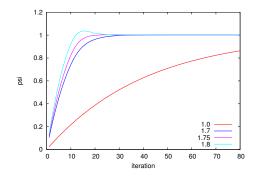
Optimal (for this problem and large N)

$$r=\frac{2}{1+\frac{\pi}{N}}.$$

With optimal r need 2N iterations for 4 figure accuracy \rightarrow total cost $O(N^3)$ operations.

Test code 2

• $\psi(\frac{1}{2}, \frac{1}{2})$ vs number of iterations

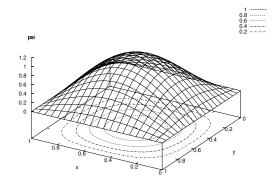


For N=20 Gauss-Seidel needs 500 iterations, whereas SOR with optimal $r\approx 1.75$ needs 20.

2.4 Test code

1.
$$\omega = 0 \rightarrow \psi = 0$$
?

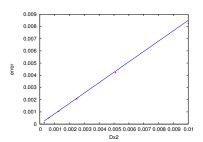
- ► Check loops range-checking option of compiler
- ► Compile of two types of machine uninitialised variables
- 2. $\omega = 2\pi^2 \sin \pi x \sin \pi y \rightarrow \psi = \sin \pi x \sin \pi y$?
 - ▶ Plot $\psi(x, y)$ shape OK? magnitude correct?



Test code 3

3. Variation with Δx of maximum error

$$\mathsf{Error} = \max_{\mathrm{grid}} \left| \psi^{\mathrm{numerical}}_{ij} - \psi^{\mathrm{theory}}(i\Delta x, j\Delta)
ight|,$$



Test code 4

For this test problem, max error $\approx 0.85 \Delta x^2$ Hence

1% error (normal working) at
$$N = 10$$

10⁻³ error (if really needed) at $N = 28$

But $CPU_{28} \approx 20CPU_{10}$

2.6 Simple graphing

Program writes out table: on *i*th line x_i, y_i , and z_i if contouring.

Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot 'res' with lines

- (auto)scale, label, logs, multiple plots

Contour plots z(x, y): > splot 'res' w I

Many options: list with egs: > help.

End: > quit

2.5 Code Quality

One-off code (written today, used today, never again): simple, clear layout, no tricks

Production code:

- Comments on most lines
- ► Test for problems, halt with helpful message
- ▶ Bullet-proof no indirect action
- ► Fast and efficient

EG avoid repeating same calculation, so first set r1=1-r, r025=0.25r and $h2w_{ij}=h^2\omega_{ij}$. Then

$$\psi_{ij}=r1\psi_{ij}+r025\left[egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}\psi_{ij}+h2w_{ij}
ight],$$

Packages: NAG, LAPACK, matrix routines