Resumé of lecture 2

Driven Cavity in ψ - ω formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution: $O(\Delta x^2)$ error?

2.7 Vorticity evolution

$$rac{\partial \omega}{\partial t} = -rac{\partial (\omega,\psi)}{\partial (x,y)} + rac{1}{Re}
abla^2 \omega$$

with $\omega = 0$ at t = 0.

Forward time-step from $t = n\Delta t$ to $t = (n + 1)\Delta t$ at interior points $i = 1 \rightarrow N - 1$, $j = 1 \rightarrow N - 1$

$$\begin{split} \omega_{ij}^{n+1} &= \omega_{ij}^{n} + \Delta t \left[-\frac{\psi_{ij+1}^{n} - \psi_{ij-1}^{n}}{2\Delta x} \frac{\omega_{i+1j}^{n} - \omega_{i-1j}^{n}}{2\Delta x} \right. \\ &+ \frac{\psi_{i+1j}^{n} - \psi_{i-1j}^{n}}{2\Delta x} \frac{\omega_{ij+1}^{n} - \omega_{ij-1}^{n}}{2\Delta x} \right] + \frac{\Delta t}{Re\Delta x^{2}} \begin{pmatrix} 1 \\ 1 & -4 \\ 1 \end{pmatrix} \omega_{ij}^{n} \end{split}$$

On boundary need $\psi=$ 0, and value of ω

Boundary condition on ω – so that $\frac{\partial \psi}{\partial n} = U_{\text{wall}}$

For bottom y = 0:

SO

$$\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$$

 $u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Lambda x}$

1st order BC

 $\omega_0 \approx \omega_{\frac{1}{4}} = \frac{\frac{\psi_{i1} - \psi_{i0}}{\Delta x} - U_{\text{wall}}}{\frac{1}{2}\Delta x}$

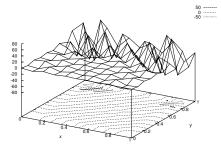
2nd order, by linear extrapolation

$$\omega_0\approx\frac{4\omega_{\frac{1}{4}}-\omega_1}{3}.$$

Starts at t = 0 as numerical delta function, then diffuses.

2.8 Time-step instability

plot
$$\omega$$
 for $Re = 10$ at $t = 0.525$ with $\Delta t = 0.035$ and $\Delta x = 0.1$



Numerical or physical instability? Not physically unstable at Re = 10 surely?

Time step instability 2

Checker board pattern.

Diffusion terms in time-stepping algorithm

 $A_{n+1} = A_n + \frac{\Delta t}{Re\Delta x^2} \cdot - 8A_n$

Stable if $\Delta t < \frac{1}{4}Re\Delta x^2$ – at least one Δt to diffuse one Δx .

EJH works at $\frac{1}{5}$.

Advection instability \rightarrow CFL condition (Courant-Friedricks-Lewy)

Stable if $\Delta t < \Delta x/U_{\rm max}$ – at least one Δt to advect one Δx .

Must resolve boundary layers

Dimensional: $U_{\max}\Delta x/\nu < 1 \Leftrightarrow$ Nondimensional $\Delta x < \frac{1}{Re}$. This + stable diffusion \Rightarrow stable advection

Total cost to t = 1

$$\left(\# \text{ time steps} \frac{1}{\Delta t} \propto N^2 \right) \times (\text{cost per time step (SOR)} \propto N^3)$$

 $\propto N^5$

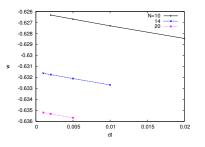
Hence doubling N is 32 times longer, quadruple N is 1024 longer.

'Better' time step algorithms \rightarrow larger Δt , but more accurate?

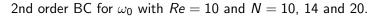
2.9 Accuracy consistency. a. Time-stepping

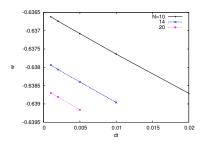
No analytic solution to test \rightarrow test code has designed accuracy $O(\Delta t, \Delta x^2)$.

Forward differencing $\rightarrow O(\Delta t)$ errors. Look at $\omega(x = 0.5, y = 0.5, t = 1) - \text{exactly} (0.5, 0.5, 1)$ 1st order BC for ω_0 with Re = 10 and N = 10, 14 and 20.



Note: linear in Δt , very very small Δt (larger unstable), Large errors in $\Delta x \rightarrow 2$ nd order BC for ω_0 better?





Much smaller errors from Δx .

Well matched design

Errors for this problem are 2nd order in Δx and 1st order in Δt ,

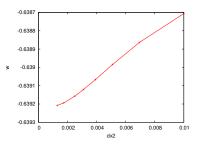
but stability has $\Delta t = \frac{1}{5} Re \Delta x^2$.

Hence time errors $O(\Delta t) \approx$ space errors $O(\Delta x^2)$

Hence no need for second-order time-stepping.

Accuracy consistence. b. Overall $O(\Delta x^2)$

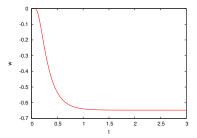
Set $\Delta t = 0.2 Re \Delta x^2$. Plot $\omega(0.5, 0.5, 1)$ at Re = 10 for N = 10, 12, 14, 16, 18, 20, 24 and 28.



Linear in Δx^2 . Result: $\omega(0.5, 0.5, 1) = -0.63925 \pm 0.00005$. Note linear extrapolation in Δx^2 from N = 10 and 14 gives same accuracy as 28 at $\frac{1}{32}$ the CPU.

2.10 Results: time to evolve

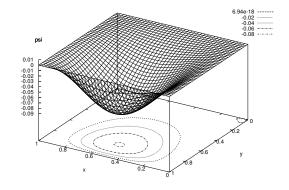
Vorticity at centre of box as a function of time, with N = 20 and Re = 10.



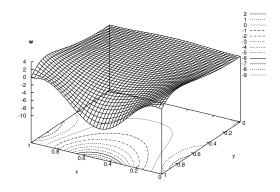
Steady to 10^{-4} by t = 2, time to diffuse across box. For steady state, try reducing to 3 SOR per time step in place of *N*.

Results: steady streamfunction

At t = 3, Re = 10 and N = 40.



Fast near lid, slow deep into cavity. Weak reversed circulations in bottom corners At t = 3, Re = 10 and N = 40.



Slight asymmetry downstream

Force on lid

$$F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{i=N} \Delta x.$$

With $O(\Delta x)$ error

$$\frac{\partial^2 \psi}{\partial y^2}\Big|_{j=N} \approx \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} = \left. \frac{\psi_{i\,N} - 2\psi_{i\,N-1} + \psi_{i,N-2}}{\Delta x^2} + O(\Delta x). \right.$$

For $O(\Delta x^2)$, linearly extrapolate to boundary

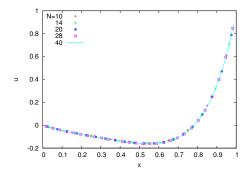
$$\begin{split} \frac{\partial^2 \psi}{\partial y^2} \bigg|_{j=N} &\approx 2 \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-1} - \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N-2} \\ &= \left. \frac{2\psi_{iN} - 5\psi_{iN-1} + 4\psi_{iN-2} - \psi_{iN-3}}{\Delta x^2} + O(\Delta x^2). \end{split}$$

Check: $\psi = 1, y, y^2, y^3 \rightarrow 0, 0, 2, 0$

Results: steady mid-section velocity u(0.5, y)

$$u_{ij+rac{1}{2}}=rac{\psi_{ij+1}-\psi_{ij}}{\Delta x}$$
 for $y=(j+rac{1}{2})\Delta x$

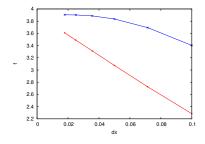
At Re = 10, with N = 10, 14, 20, 28,40.

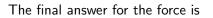


Agree to visual accuracy

Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.

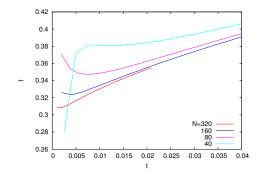


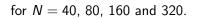


 $F = 3.905 \pm 0.002$ at Re = 10.

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F/\sqrt{t/Re}$





Failure: Code not designed for \sqrt{t} behaviour.

Note 0.33, 0.319, 0.307 $ightarrow rac{1}{2\sqrt{\pi}} = 0.281$ with 0.4 $\Delta x^{1/2}$ error.