Driven Cavity in $\psi-\omega$ formulation.

Finite Differences

Poisson problem. SOR.

Test against theoretical solution: $O(\Delta x^2)$ error?

2.7 Vorticity evolution

$$
\frac{\partial \omega}{\partial t} = -\frac{\partial (\omega, \psi)}{\partial (\mathsf{x}, \mathsf{y})} + \frac{1}{Re} \nabla^2 \omega
$$

with $\omega = 0$ at $t = 0$.

Forward time-step from $t = n\Delta t$ to $t = (n+1)\Delta t$ at interior points $i = 1 \rightarrow N - 1$, $j = 1 \rightarrow N - 1$

$$
\omega_{ij}^{n+1} = \omega_{ij}^n + \Delta t \left[-\frac{\psi_{ij+1}^n - \psi_{ij-1}^n}{2\Delta x} \frac{\omega_{i+1j}^n - \omega_{i-1j}^n}{2\Delta x} + \frac{\psi_{i+1j}^n - \psi_{i-1j}^n}{2\Delta x} \frac{\omega_{ij+1}^n - \omega_{ij-1}^n}{2\Delta x} \right] + \frac{\Delta t}{Re\Delta x^2} \left(1 - \frac{1}{1} - \frac{1}{1} \right) \omega_{ij}^n
$$

On boundary need $\psi = 0$, and value of ω

Boundary condition on ω – so that $\frac{\partial \psi}{\partial n} = U_{\mathrm{wall}}$

For bottom $y = 0$:

 $u_{\frac{1}{2}} = \frac{\psi_{i1} - \psi_{i0}}{\Delta x}$

so

$$
\omega_{\frac{1}{4}} = \frac{u_{\frac{1}{2}} - U_{\text{wall}}}{\frac{1}{2}\Delta x}
$$

∆x

1st order BC

$$
\omega_0 \approx \omega_{\frac{1}{4}} = \frac{\frac{\psi_{i1} - \psi_{i0}}{\Delta x} - U_{\text{wall}}}{\frac{1}{2}\Delta x}
$$

2nd order, by linear extrapolation

$$
\omega_0 \approx \frac{4\omega_{\frac{1}{4}}-\omega_1}{3}.
$$

Starts at $t = 0$ as numerical delta function, then diffuses.

2.8 Time-step instability

plot
$$
\omega
$$
 for $Re = 10$ at $t = 0.525$ with $\Delta t = 0.035$ and $\Delta x = 0.1$

Numerical or physical instability? Not physically unstable at $Re = 10$ surely?

Time step instability 2

Checker board pattern.

Diffusion terms in time-stepping algorithm

 $A_{n+1} = A_n + \frac{\Delta t}{B_0 \Delta t}$ $\frac{1}{Re\Delta x^2}$. – 8A_n

Stable if $\Delta t < \frac{1}{4}Re\Delta x^2$ – at least one Δt to diffuse one Δx .

EJH works at $\frac{1}{5}$.

Advection instability \rightarrow CFL condition (Courant-Friedricks-Lewy)

Stable if $\Delta t < \Delta x / U_{\text{max}}$ – at least one Δt to advect one Δx .

Must resolve boundary layers

Dimensional: $U_{\rm max} \Delta x / \nu < 1 \Leftrightarrow$ Nondimensional $\Delta x < \frac{1}{Re}$. This + stable diffusion \Rightarrow stable advection

Total cost to $t = 1$

$$
\left(\#\text{ time steps}\frac{1}{\Delta t} \propto N^2\right) \times \left(\text{cost per time step (SOR)} \propto N^3\right)
$$

$$
\propto N^5
$$

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

'Better' time step algorithms \rightarrow larger Δt , but more accurate?

2.9 Accuracy consistency. a. Time-stepping

No analytic solution to test \rightarrow test code has designed accuracy $O(\Delta t, \Delta x^2)$.

Forward differencing $\rightarrow O(\Delta t)$ errors. Look at $\omega(x = 0.5, y = 0.5, t = 1)$ – exactly $(0.5, 0.5, 1)$ 1st order BC for ω_0 with $Re = 10$ and $N = 10$, 14 and 20.

Note: linear in Δt , very very small Δt (larger unstable), Large errors in $\Delta x \rightarrow 2$ nd order BC for ω_0 better?

Well matched design

Accuracy consistence. b. Overall $O(\Delta x^2)$

Set $\Delta t=$ 0.2 $Re \Delta x^{2}$. Plot $\omega(0.5,0.5,1)$ at $Re=10$ for $N = 10, 12, 14, 16, 18, 20, 24$ and 28.

Linear in Δx^2 . Result: $\omega(0.5,0.5,1)=-0.63925\pm0.00005.$ Note linear extrapolation in Δx^2 from $\mathcal{N}=10$ and 14 gives same accuracy as 28 at $\frac{1}{32}$ the CPU.

Results: steady streamfunction

At $t = 3$, $Re = 10$ and $N = 40$.

Fast near lid, slow deep into cavity. Weak reversed circulations in bottom corners

Errors for this problem are 2nd order in Δx and 1st order in Δt ,

but stability has $\Delta t = \frac{1}{5}Re\Delta x^2$.

Hence time errors $O(\Delta t)\approx$ space errors $O(\Delta x^2)$

Hence no need for second-order time-stepping.

2.10 Results: time to evolve

Vorticity at centre of box as a function of time, with $N = 20$ and $Re = 10$.

Steady to 10^{-4} by $t = 2$, time to diffuse across box. For steady state, try reducing to 3 SOR per time step in place of N.

At $t = 3$, $Re = 10$ and $N = 40$.

Slight asymmetry downstream

Force on lid

$$
F = \int_0^1 \left. \frac{\partial u}{\partial y} \right|_{y=1} dx \approx \sum_{i=0}^N \left. \frac{\partial^2 \psi}{\partial y^2} \right|_{j=N} \Delta x.
$$

With $O(\Delta x)$ error

$$
\left.\frac{\partial^2 \psi}{\partial y^2}\right|_{j=N} \approx \left.\frac{\partial^2 \psi}{\partial y^2}\right|_{j=N-1} = \frac{\psi_{i\,N} - 2\psi_{i\,N-1} + \psi_{i,N-2}}{\Delta x^2} + O(\Delta x).
$$

For $O(\Delta x^2)$, linearly extrapolate to boundary

$$
\left.\frac{\partial^2 \psi}{\partial y^2}\right|_{j=N} \approx 2 \left.\frac{\partial^2 \psi}{\partial y^2}\right|_{j=N-1} - \left.\frac{\partial^2 \psi}{\partial y^2}\right|_{j=N-2}
$$

$$
= \left.\frac{2\psi_{i\,N} - 5\psi_{i\,N-1} + 4\psi_{i,N-2} - \psi_{i,N-3}}{\Delta x^2} + O(\Delta x^2).
$$

Check: $\psi = 1, y, y^2, y^3 \to 0, 0, 2, 0$

Results: steady mid-section velocity $u(0.5, y)$

$$
u_{ij+\frac{1}{2}} = \frac{\psi_{ij+1} - \psi_{ij}}{\Delta x} \quad \text{for} \quad y = (j+\frac{1}{2})\Delta x
$$

At $Re = 10$, with $N = 10$, 14, 20, 28,40.

Results: force on lid

At $Re = 10$ for $N = 10$, 14, 20, 28, 40 and 56.

The final answer for the force is

 $F = 3.905 \pm 0.002$ at $Re = 10$.

Results: early times

Simple $\sqrt{\nu t}$ solution. Plot $F/\sqrt{t/Re}$

Failure: Code not designed for \sqrt{t} behaviour.

Note 0.33, 0.319, 0.307 $\rightarrow \frac{1}{2\sqrt{\pi}} = 0.281$ with $0.4\Delta x^{1/2}$ error.