
Linear Algebra – brief review

Many good long textbooks

DO NOT CODE – use excellent free packages

Nonlinear fluids → many linear sub-problems,
e.g. Poisson problem, e.g. linear stability

Questions

◮ “matrix inversion”: Ax = b

◮ eigenvalues: Ae = λe

Matrices

◮ dense or sparse

◮ symmetric, positive definite, banded,. . .

LAPACK

Free packages. Download library.

Search engine to find correct routine for you

◮ linear equations or linear least squares,
or eigenvalues, singular decomposition, generalised

◮ precision: single/double, real/complex

◮ matrix type: symmetric, SPD, banded

Driver routine, calls computational routines, calls auxiliary (BLAS)

Real, single, general matrix, linear equations
SGESV(N,Nrhs,A, LDA, IPIV ,B , LBD, info)
where matrix A is N × N, with Nrhs b’s in B .

Solving linear simultaneous equations

1. Gaussian elimination

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
...

...
an1x1 + an2x2 + . . . + annxn = bn

Divide 1st eqn by a11, so coef x1 is 1
Subtract 1st eqn ×ak1 from kth eqn, so coef x1 becomes 0
Repeat on (n − 1)× (n − 1) subsystem of eqn 2→ n

Repeat on even smaller subsystems

Finally back-solve

annxn = bn → xn
an−1 n−1xn−1+ an−1 nxn = bn−1 → xn−1

...
→ x1

LU decomposition – rephrase Gaussian elimination

Lower and Upper triangular

L =









1 0 0 0
. 1 0 0
. . 1 0
. . . 1









U =









. . . .
0 . . .
0 0 . .
0 0 0 .









Step k = 1→ n:
ukj = akj for j = k → n

ℓik = aik/akk for i = k → n

aij ← aij − ℓikukj for i = k + 1→ n, for j = k + 1→ n

For a dense matrix 1
3n

3 multiplies
For a tridiagonal matrix, avoiding zeros 2n multiplies

Solve LUx = b by

Forward Ly = b

ℓ11y1 = b1 → y1
ℓ21y1 + ℓ22y2 = b1 → y − 2

...
→ yn

Backward Ux = y

unnxn = yn → xn
un−1 n−1xn−1 + un−1 nxn = yn−1 → xn−1

...
→ x1

Finding LU is O(n3)
but solving LUx = b for a new b is only O(n2)

LU: pivoting

Problem at step k if akk = 0
Find largest ajk in j = k → n, say at j = ℓ
Swap rows k and ℓ – use index mapping (permutation matrix)

Partial pivoting = swapping rows
Full pivoting = swap rows and columns – rarely better

◮ Note detA = Πiuii

◮ Symmetric A: A = LDLT with diagonal D

◮ Sym & positive definite: A = (LD1/2)(LD1/2)T Cholesky

◮ Tridiagonal A: L diagonal and one under, U diagonal and one
above.

Errors Ax = b

Small ǫ error in b could become ǫ/λmin error in solution,
while worst solution is b/λmax

Thus relative error in solution could increase by factor

K =
λmax

λmin

= condition number of A

Theoretically LU decomposition gives bigger errors, but not often

QR decomposition

A = QR

◮ R upper triangular

◮ Q orthogonal, QQT = I , i.e. columns orthonormal
So at no cost Q−1 = QT

◮ May not stretch/increase errors like LU

◮ Used for eigenvalues

◮ detA = Πi rii

Q not unique

3 methods: Gram-Schmidt, Givens, Householder

QR Gram-Schmidt

Columns of A a1, a2, . . . , an

q′1 = a1 q1 = q′1/|q
′

1|
q′2 = a2 −(a2 · q1)q1 q2 = q′2/|q

′

2|
q′3 = a3 −(a3 · q1)q1 −(a3 · q2)q2 q3 = q′3/|q

′

3|
...

Q = matrix with columns q1,q2, . . . ,qn

Let
rii = |q

′

i |, and rij = aj · qi , i < j

Then

aj =

j
∑

i=1

qj rij i.e. A = QR

Better: when produce qi project it out of aj j > i

QR Givens rotation

Q = product of many rotations

Gij =





























i j

1
1

i cos θ sin θ
1

1
j − sin θ cos θ

1
1





























GijA alters rows and columns i and j

Choose θ to zero an off-diagonal
Strategy to avoid filling previous zeros

Can parallelise

QR Householder

Q = product of many reflections

H =

(

I − 2
hhT

h · h

)

Take h1 = a1 + (α1, 0, . . . , 0)
T with α1 = |a1|sign(a11)

So
h1 · a1 = |a1|

2 + |a11||a1| and h1 · h1 = twice

Hence
H1a1 = (−α1, 0, . . . , 0)

T

Now work on (n − 1)× (n − 1) subsystem in same way

Note Hx is O(n) operations, not O(n3)
Hence forming Q is O(n3)

Sparse matrices

Do not store all A, just non-zero elements in “packed” form

Evaluating Ax cheaper than O(n2)
e.g. Poisson on N × N grid, A is N2 × N2 with 5N2 non-zero,
so Ax is 5N2 not N4

LU and QR “direct methods” for dense (faster if banded)

Use iterative method for sparse A

i.e.
A = B + C → xn+1 = B−1(b− Cxn)

converges if |B−1C | < 1, e.g. Sor

Conjugate gradients – A symmetric, positive definite

– actually a direct method, but usually converges well before n steps

Solve Ax = b by minimising quadratic

f (x) = 1
2(Ax − b)TA−1(Ax − b) = 1

2x
TAx − xTb + 1

2b
TAb

with
∇f = Ax − b

From xn look in direction u for minimum

f (xn + αu) = f (xn) + αu · ∇fn +
1
2α

2uTAu

i.e. minimum at α = −u · ∇fn/u
Au

Choose u? steepest descent u = ∇f ? NO

GC not steepest descent ∇f

Steepest descent → rattle from side to side across steep valley
with no movement along the valley floor

Need new direction v which does not reset u minimisation

f (xn + αu+ βv) = f (xn) + αu · ∇fn +
1
2α

2uTAu

+αβuTAv + βv · ∇fn +
1
2β

2vTAv

Hence need uTAv = 0 “conjugate directions”

Conjugate Gradient Algorithm

Start x0 and u0
Residual rn = Axn − b = ∇fn
Iterate

xn+1 = xn + αun

rn+1 = rn + αAun

un+1 = rn+1 + βun

Minimising α = −
uTn rn

uTn Aun

Conj grad β = −
rTn+1Aun

uTn Aun

Note only one matrix evaluation per iteration – good sparse

Can show un+1 conjugate all ui i = 1, 2, . . . , n

Can show α =
rTn rn

uTn Aun
, β =

rTn+1rn+1

rTn rn

Precondition
Ax = b same solution as B−1Ax = B−1b

Choose B with easy inverse and B−1A sparse
Typical ILU = incomplete LU, few large elements

Non-symmetric A

Gmres minimises (Ax − b)T (Ax − b)
– but condition number K 2

Gmres(n) restart after n – avoids large storage

If tough, then SVD = singular value decomposition

A = USV =
∑

i

uTi λivi

with v and u eigenvalues and adjoints, λi eigenvalues

Eigenproblems Ae = λe and generalised Ae = λBe

◮ No finite/direct method – must iterate

◮ A real & symmetric – nice orthogonal evectors

◮ A not symmetric – possible degenerate cases
also non-normal modes (& pseud-spectra. . .)

d

dt

(

x

y

)

=

(

−1 k2

0 −1− k

)(

x

y

)

IC x(0) = 0y(0) = 1

has solution x = k(e−t − e(1+k)t)
which eventually decays but before is k larger than IC.

Henceforth A real and symmetric

Power iteration – for largest evalue

Start random x0
Iterate a few times xn+1 = Axn = Anx0

xn becomes dominated by evector with largest evalue, so

λapprox = |Axx |/|xn|, eapprox = Axx/|Axn|

With this crude approximation invert

(A− λapproxI)
−1

which has one very large evalue 1/(λcorrect − λapprox),
so power iteration on this converges very rapidly

Find other evalues with µ-shifts (A− µI)−1

Jacobi – small A only

Find maximum off-diagonal aij

Givens rotation Gij with θ to zero aij , and aji by symmetry

A′ = GAGT has same evalues

Does fill in previous zeros,
but sum of off-diagonals squared decreases by a2ij

Hence converges to diagonal (=evalues) form

Main method

Step 1: reduce to Hessenberg H, upper triangular plus one below
diagonal

Arnoldi (GS on Kyrlov space q1,Aq1,A
2q1, . . .)

Given unit q1, step k = 1→ n − 1

v = Aqk

for j = 1→ k Hjk = qj · v , v ← v − Hjkqj

Hkk = |v |

qk+1 = v/Hk+1 k

Hence

original v = Aqk = Hk+1 kqk+1 + Hkkqk + . . .+ H1kq1

i.e. A (q1, q2, . . . , qn) = (q1, q2, . . . , qn)H

i.e. AQ = QH or H = QTAQ with same evalues as A

Cost O(n2) if dense

H = QTAQ Hessenberg

A symmetric → H symmetric, hence tridiagonal

Hence reduce ‘for j = 1→ k ’ to ‘for j = k − 1, k ’,

Cost → O(n2) (Lanzcos)

NB: making qk+1 orthogonal to qk & qk−1

gives qk+1 orthogonal to qj j = k , k − 1, k − 2, . . . , 1

cf conjugate gradient

Main method, step 2

a. QR Find QR decomposition of H
Set H ′ = RQ = QTAQ

– remains Hessenberg/Tridiagonal
– off-diagonals reduced by λi/λj

→ converges to diagonal, of evalues

b. Power iteration – quick when tridiagonal

c. Root solve det(A− λI) = 0 – quick if tridiagonal

BUT USE PACKAGES

