Linear Algebra – brief review

Many good long textbooks

DO NOT CODE – use excellent free packages

Nonlinear fluids \rightarrow many linear sub-problems, e.g. Poisson problem, e.g. linear stability

Questions

- "matrix inversion": Ax = b
- eigenvalues: $Ae = \lambda e$

Matrices

- dense or sparse
- ▶ symmetric, positive definite, banded,...

I APACK

Free packages. Download library.

Search engine to find correct routine for you

- ► linear equations or linear least squares. or eigenvalues, singular decomposition, generalised
- ▶ precision: single/double, real/complex
- matrix type: symmetric, SPD, banded

Driver routine, calls computational routines, calls auxiliary (BLAS)

Real, single, general matrix, linear equations SGESV(N, Nrhs, A, LDA, IPIV, B, LBD, info) where matrix A is $N \times N$, with Nrhs b's in B.

Solving linear simultaneous equations

1. Gaussian elimination

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$

Divide 1st eqn by a_{11} , so coef x_1 is 1

Subtract 1st eqn $\times a_{k1}$ from kth eqn, so coef x_1 becomes 0 Repeat on $(n-1) \times (n-1)$ subsystem of eqn $2 \rightarrow n$ Repeat on even smaller subsystems

Finally back-solve

$$a_{nn}x_n = b_n \rightarrow x_n$$

$$a_{n-1\,n-1}x_{n-1} + a_{n-1\,n}x_n = b_{n-1} \rightarrow x_{n-1}$$

$$\vdots$$

$$\rightarrow x_1$$

LU decomposition - rephrase Gaussian elimination

Lower and Upper triangular

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \cdot & 1 & 0 & 0 \\ \cdot & \cdot & 1 & 0 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix} \qquad U = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \cdot \\ 0 & 0 & 0 & \cdot \end{pmatrix}$$

Step
$$k = 1 \rightarrow n$$
:
 $u_{kj} = a_{kj}$ for $j = k \rightarrow n$
 $\ell_{ik} = a_{ik}/a_{kk}$ for $i = k \rightarrow n$
 $a_{ij} \leftarrow a_{ij} - \ell_{ik}u_{kj}$ for $i = k + 1 \rightarrow n$, for $j = k + 1 \rightarrow n$

For a dense matrix $\frac{1}{3}n^3$ multiplies For a tridiagonal matrix, avoiding zeros 2n multiplies Solve LUx = b by

Forward Ly = b

$$\begin{array}{rcl} \ell_{11}y_1 & = & b_1 \rightarrow & y_1 \\ \ell_{21}y_1 & + & \ell_{22}y_2 & = & b_1 \rightarrow & y-2 \\ & & \vdots \\ & & & & \ddots \\ & & & & & y_n \end{array}$$

Backward Ux = y

$$u_{nn}x_n = y_n \rightarrow x_n$$

$$u_{n-1n-1}x_{n-1} + u_{n-1n}x_n = y_{n-1} \rightarrow x_{n-1}$$

$$\vdots$$

$$\rightarrow x_1$$

Finding LU is $O(n^3)$ but solving LUx = b for a new b is only $O(n^2)$

Errors Ax = b

Small ϵ error in b could become ϵ/λ_{\min} error in solution, while worst solution is b/λ_{\max} Thus relative error in solution could increase by factor

$$K = rac{\lambda_{\max}}{\lambda_{\min}} = ext{condition number of } A$$

Theoretically LU decomposition gives bigger errors, but not often

LU: pivoting

Problem at step k if $a_{kk} = 0$ Find largest a_{jk} in $j = k \rightarrow n$, say at $j = \ell$ Swap rows k and ℓ – use index mapping (permutation matrix)

Partial pivoting = swapping rows Full pivoting = swap rows and columns - rarely better

- Note det $A = \prod_i u_{ii}$
- Symmetric A: $A = LDL^T$ with diagonal D
- Sym & positive definite: $A = (LD^{1/2})(LD^{1/2})^T$ Cholesky
- ► Tridiagonal A: L diagonal and one under, U diagonal and one above.

QR decomposition

- A = QR
- ► *R* upper triangular
- Q orthogonal, $QQ^T = I$, i.e. columns orthonormal So at no cost $Q^{-1} = Q^T$
- ▶ May not stretch/increase errors like LU
- Used for eigenvalues
- det $A = \prod_i r_{ii}$
- Q not unique

3 methods: Gram-Schmidt, Givens, Householder

QR Gram-Schmidt

Columns of $A = \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$

$$\begin{array}{lll} \mathbf{q}_{1}' &= \mathbf{a}_{1} & \mathbf{q}_{1} = \mathbf{q}_{1}'/|\mathbf{q}_{1}' \\ \mathbf{q}_{2}' &= \mathbf{a}_{2} & -(\mathbf{a}_{2} \cdot \mathbf{q}_{1})\mathbf{q}_{1} & \mathbf{q}_{2} = \mathbf{q}_{2}'/|\mathbf{q}_{2}' \\ \mathbf{q}_{3}' &= \mathbf{a}_{3} & -(\mathbf{a}_{3} \cdot \mathbf{q}_{1})\mathbf{q}_{1} & -(\mathbf{a}_{3} \cdot \mathbf{q}_{2})\mathbf{q}_{2} & \mathbf{q}_{3} = \mathbf{q}_{3}'/|\mathbf{q}_{3}' \\ \vdots & \end{array}$$

Q = matrix with columns $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$

Let

$$r_{ii} = |\mathbf{q}'_i|, \text{ and } r_{ij} = \mathbf{a}_j \cdot \mathbf{q}_i, i < j$$

Then

$$\mathbf{a}_j = \sum_{i=1}^J \mathbf{q}_j r_{ij}$$
 i.e. $A = QR$

Better: when produce \mathbf{q}_i project it out of \mathbf{a}_j j > i

QR Householder

Q = product of many reflections

$$H = \left(I - 2\frac{\mathbf{h}\mathbf{h}^{T}}{\mathbf{h}\cdot\mathbf{h}}\right)$$

Take $\mathbf{h}_1 = \mathbf{a}_1 + (\alpha_1, 0, \dots, 0)^T$ with $\alpha_1 = |\mathbf{a}_1| \operatorname{sign}(\mathbf{a}_{11})$ So

 $\mathbf{h}_1 \cdot \mathbf{a}_1 = |\mathbf{a}_1|^2 + |a_{11}||\mathbf{a}_1|$ and $\mathbf{h}_1 \cdot \mathbf{h}_1 = \mathsf{twice}$

Hence

$$H_1\mathbf{a}_1 = (-\alpha_1, 0, \dots, 0)^T$$

Now work on $(n-1) \times (n-1)$ subsystem in same way

Note Hx is O(n) operations, not $O(n^3)$ Hence forming Q is $O(n^3)$ QR Givens rotation

Q = product of many rotations

 $G_{ij}A$ alters rows and columns *i* and *j* Choose θ to zero an off-diagonal Strategy to avoid filling previous zeros Can parallelise

Sparse matrices

Do not store all A, just non-zero elements in "packed" form Evaluating Ax cheaper than $O(n^2)$ e.g. Poisson on $N \times N$ grid, A is $N^2 \times N^2$ with $5N^2$ non-zero, so Ax is $5N^2$ not N^4 LU and QR "direct methods" for dense (faster if banded) Use iterative method for sparse A

i.e.

 $A = B + C \quad \rightarrow \quad \mathbf{x}_{n+1} = B^{-1}(\mathbf{b} - C\mathbf{x}_n)$

converges if $|B^{-1}C| < 1$, e.g. Sor

- actually a direct method, but usually converges well before n steps
- Solve Ax = b by minimising quadratic

$$f(x) = \frac{1}{2}(Ax - b)^{T}A^{-1}(Ax - b) = \frac{1}{2}x^{T}Ax - x^{T}b + \frac{1}{2}b^{T}Ab$$

with

$$\nabla f = Ax - b$$

From \mathbf{x}_n look in direction \mathbf{u} for minimum

$$f(\mathbf{x}_n + \alpha \mathbf{u}) = f(\mathbf{x}_n) + \alpha \mathbf{u} \cdot \nabla f_n + \frac{1}{2} \alpha^2 \mathbf{u}^T A \mathbf{u}$$

i.e. minimum at $\alpha = -\mathbf{u} \cdot \nabla f_n / \mathbf{u}^A \mathbf{u}$

Choose **u**? steepest descent **u** = ∇f ? **NO**

Conjugate Gradient Algorithm

Start x_0 and u_0 Residual $r_n = Ax_n - b = \nabla f_n$ Iterate

 $x_{n+1} = x_n + \alpha u_n$ $r_{n+1} = r_n + \alpha A u_n$ $u_{n+1} = r_{n+1} + \beta u_n$ Conj grad $\beta = -\frac{r_{n+1}^T A u_n}{u_n^T A u_n}$

Note only one matrix evaluation per iteration – good sparse

Can show u_{n+1} conjugate all u_i $i = 1, 2, \ldots, n$

Can show $\alpha = \frac{r_n^T r_n}{u_n^T A u_n}$, $\beta = \frac{r_{n+1}^T r_{n+1}}{r_n^T r_n}$

GC not steepest descent ∇f

Steepest descent \rightarrow rattle from side to side across steep valley with no movement along the valley floor

Need new direction ${\bf v}$ which does not reset ${\bf u}$ minimisation

 $f(\mathbf{x}_n + \alpha \mathbf{u} + \beta \mathbf{v}) = f(\mathbf{x}_n) + \alpha \mathbf{u} \cdot \nabla f_n + \frac{1}{2} \alpha^2 \mathbf{u}^T A \mathbf{u} + \alpha \beta \mathbf{u}^T A \mathbf{v} + \beta \mathbf{v} \cdot \nabla f_n + \frac{1}{2} \beta^2 \mathbf{v}^T A \mathbf{v}$

Hence need $\mathbf{u}^T A \mathbf{v} = 0$ "conjugate directions"

Precondition Ax = b same solution as $B^{-1}Ax = B^{-1}b$ Choose B with easy inverse and $B^{-1}A$ sparse Typical ILU = incomplete LU, few large elements

Non-symmetric A GMRES minimises $(Ax - b)^T (Ax - b)$ – but condition number K^2 GMRES(n) restart after n – avoids large storage

If tough, then SVD = singular value decomposition

$$A = USV = \sum_{i} u_i^T \lambda_i v_i$$

with v and u eigenvalues and adjoints, λ_i eigenvalues

- ► No finite/direct method must iterate
- ► A real & symmetric nice orthogonal evectors
- A not symmetric possible degenerate cases also non-normal modes (& pseud-spectra...)

$$\frac{d}{dt}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-1 & k^2\\0 & -1-k\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} \quad \text{IC} \quad x(0) = 0y(0) = 1$$

has solution $x = k(e^{-t} - e^{(1+k)t})$ which eventually decays but before is k larger than IC.

Henceforth A real and symmetric

Power iteration – for largest evalue

Start random x_0 Iterate a few times $x_{n+1} = Ax_n = A^n x_0$

 x_n becomes dominated by evector with largest evalue, so

$$\lambda_{\text{approx}} = |Ax_x|/|x_n|, \qquad e_{\text{approx}} = Ax_x/|Ax_n|$$

With this crude approximation invert

$$(A - \lambda_{approx}I)^{-1}$$

which has one very large evalue $1/(\lambda_{correct} - \lambda_{approx})$, so power iteration on this converges very rapidly

Find other evalues with μ -shifts $(A - \mu I)^{-1}$

Jacobi – small A only

Find maximum off-diagonal a_{ii}

Givens rotation G_{ij} with θ to zero a_{ij} , and a_{ji} by symmetry

$$A' = GAG^T$$
 has same evalues

Does fill in previous zeros,

but sum of off-diagonals squared decreases by a_{ij}^2

Hence converges to diagonal (=evalues) form

Main method

Step 1: reduce to Hessenberg H, upper triangular plus one below diagonal

Arnoldi (GS on Kyrlov space $q_1, Aq_1, A^2q_1, \ldots$) Given unit q_1 , step $k = 1 \rightarrow n - 1$

$$v = Aq_k$$

for $j = 1 \rightarrow k \ H_{jk} = q_j \cdot v, \ v \leftarrow v - H_{jk}q_j$
$$H_{kk} = |v|$$

$$q_{k+1} = v/H_{k+1\,k}$$

Hence

original
$$v = Aq_k = H_{k+1\,k}q_{k+1} + H_{kk}q_k + \ldots + H_{1k}q_1$$

i.e. $A(q_1, q_2, \ldots, q_n) = (q_1, q_2, \ldots, q_n) H$
i.e. $AQ = QH$ or $H = Q^T AQ$ with same evalues as A

- $H = Q^T A Q$ Hessenberg
- A symmetric \rightarrow H symmetric, hence tridiagonal Hence reduce 'for $j = 1 \rightarrow k$ ' to 'for j = k - 1, k', Cost $\rightarrow O(n^2)$ (Lanzcos)
- NB: making q_{k+1} orthogonal to $q_k \& q_{k-1}$ gives q_{k+1} orthogonal to $q_j j = k, k - 1, k - 2, \dots, 1$ cf conjugate gradient

- a. QR Find QR decomposition of H Set H' = RQ = Q^TAQ
 - remains Hessenberg/Tridiagonal
 - off-diagonals reduced by λ_i/λ_j
 → converges to diagonal, of evalues
 b. Power iteration – quick when tridiagonal
- c. Root solve det $(A \lambda I) = 0$ quick if tridiagonal

BUT USE PACKAGES