Linear Algebra — brief review LAPACK

Many good long textbooks

Free packages.  Download library.
DO NOT CODE - use excellent free packages

_ _ _ Search engine to find correct routine for you
Nonlinear fluids — many linear sub-problems,

. . - » linear equations or linear least squares,
e.g. Poisson problem, e.g. linear stability

or eigenvalues, singular decomposition, generalised

Questions » precision: single/double, real/complex
» “matrix inversion”: Ax = b » matrix type: symmetric, SPD, banded
> eigenvalues: Ae = \e Driver routine, calls computational routines, calls auxiliary (BLAS)

, general matrix, linear equations
GESV(N, Nrhs, A, LDA, IPIV , B, LBD, info)
where matrix A is N x N, with Nrhs b's in B.

Matrices
» dense or sparse

» symmetric, positive definite, banded,. ..

Solving linear simultaneous equations LU decomposition — rephrase Gaussian elimination

1. Gaussian elimination

Lower and Upper triangular

ailxy + apxe + ... + ainxn = b
a1x1 + anxo + ... + amxp, = b 1000 .
: 1 .
: [— 0 0 U— 0
anxt + amxe + ... 4+ amxp, = b, 10 00 .
Divide 1st eqn by a1, so coef xj is 1 1 000
Subtract 1st eqn xayy from kth eqn, so coef x; becomes 0
Repeat on (n — 1) x (n — 1) subsystem of eqn 2 — n Step k=1 n:
Repeat on even smaller subsystems ug = akj for j=k —=n
Finally back-solve Uik = ajx/akk for i=k —n
a,-j<—a,-j—€,-kukjfori:k+1—>n, forj:k+1—>n
annXn =b, — X
an-1n-1X%n—11F an-1nXn =bp-1 — Xp-1 For a dense matrix %n3 multiplies

For a tridiagonal matrix, avoiding zeros 2n multiplies

— X1



Solve LUx = b by
Forward Ly = b

luy = b — n
biyi + LIy, = b — y—2
— Yn

Backward Ux =y

UnnXn = Yn — Xn
Up—1p-1Xp—1 + Up—1pXn = Ynp-1 — Xn-1
— X1

Finding LU is O(n%)
but solving LUx = b for a new b is only O(n?)

Errors Ax = b

Small € error in b could become €/ A, error in solution,
while worst solution is b/ Amax
Thus relative error in solution could increase by factor

K= Amax = condition number of A

/\min

Theoretically LU decomposition gives bigger errors, but not often

LU: pivoting

Problem at step k if ag, =0
Find largest aj, in j = k — n, say at j =/
Swap rows k and ¢ — use index mapping (permutation matrix)

Partial pivoting = swapping rows

Full

v

v

v

pivoting = swap rows and columns — rarely better

Note det A = M, uj;

Symmetric A: A= LDLT with diagonal D

Sym & positive definite: A = (LD'/?)(LDY?)T Cholesky
Tridiagonal A: L diagonal and one under, U diagonal and one
above.

QR decomposition

v

v

v

v

|

A=QR

R upper triangular

Q orthogonal, QQT =1, i.e. columns orthonormal
Soatnocost Q1 =QT

May not stretch/increase errors like LU
Used for eigenvalues
det A =TI1;r;

Q® not unique

3 methods: Gram-Schmidt, Givens, Householder



QR Gram-Schmidt

Columns of A aj,ap,...,a,
q) =a a1 = q/q;|
9, =a —(az-qi)q a2 = q5/|d5|

qg = a3 —(a3 . ql)Q]_ —(a3 . Q2)CI2 qs = qg/|Qé|

® = matrix with columns q1,q>,...,qn

Let
r,-,-:\qf-], and rij =a;-qj, f<j

Then _
J
aj:qur,-j i,e. A=QR
i=1

Better: when produce q; project it out of a; j >/

QR Householder

@ = product of many reflections

hh'
H=[l-2—
(1-2nh)

Take hy =a; +(a1,0,...,0)" with a; = |ay|sign(a11)
So
h;-a; = ‘31|2 + |311|]a1\ and hy - hy = twice

Hence
H1a1 = (—al, 0, PN O)T

Now work on (n — 1) x (n — 1) subsystem in same way

Note Hx is O(n) operations, not O(n%)
Hence forming @ is O(n%)

QR Givens rotation

Q® = product of many rotations

i J
1
1
i cos f sinf
Gj = 1
1
J —sinf cos 6
1

GjjA alters rows and columns i and j
Choose 6 to zero an off-diagonal

Strategy to avoid filling previous zeros
Can parallelise

Sparse matrices

Do not store all A, just non-zero elements in “packed” form

Evaluating Ax cheaper than O(n?)
e.g. Poisson on N x N grid, A is N2 x N2 with 5N? non-zero,
so Ax is 5N? not N*

LU and QR “direct methods" for dense (faster if banded)

Use iterative method for sparse A
i.e.
A=B+C = x,11=B"1b-Cx,)

converges if |[B"1C| < 1, e.g. SOR



Conjugate gradients — A symmetric, positive definite

— actually a direct method, but usually converges well before n steps

Solve Ax = b by minimising quadratic

f(x) = 3(Ax — b)TAT (Ax — b) = 3x" Ax —x" b+ 3bT Ab

with
Vf=Ax—-b

From x,, look in direction u for minimum
f(xn + au) = f(x,) + au - Vf, + 2a?u” Au
i.e. minimum at o = —u - Vf,/uu

Choose u?  steepest descent u =VFf? NO

Conjugate Gradient Algorithm

Start xg and ug
Residual r, = Ax, — b= Vf,

Iterate
L ul'r,
Minimising o= ——
Xp4+1 = Xp + QUp ul Aup,
a1 = r,,—i—ozAun Con q 5 rnC—lA“n
onj gra = -
Unt1 = i1+ Bup ulAu,

Note only one matrix evaluation per iteration — good sparse

Can show up11 conjugate all u; i=1,2,...,n
T T
r, rn Fna1fn+1
Can show av = —& 5:n+7—7

T 1
u, Aup rlrm

GC not steepest descent VF

Steepest descent — rattle from side to side across steep valley
with no movement along the valley floor

Need new direction v which does not reset u minimisation

f(xn + au + Bv) = f(x,) + au -V, + 2a?u’ Au
+afu’ Av + Bv - VF, + %ﬂszAv

Hence need u” Av =0  ‘“conjugate directions”

Precondition
Ax = b same solution as B~!Ax = B~ !b
Choose B with easy inverse and B~1A sparse
Typical ILU = incomplete LU, few large elements

Non-symmetric A
GMRES minimises (Ax — b)T (Ax — b)
— but condition number K2
GMRES(n) restart after n — avoids large storage

If tough, then SVD = singular value decomposition

A=USV =) ul\v

i

with v and u eigenvalues and adjoints, \; eigenvalues



Eigenproblems Ae = \e and generalised Ae = \Be Power iteration — for largest evalue

Start random xg

» No finite/direct method — must iterate Iterate a few times x,+1 = Ax, = A"xg
> A real & symmetric - nice orthogonal evectors Xp becomes dominated by evector with largest evalue, so
» A not symmetric — possible degenerate cases
also non-normal modes (& pseud-spectra. . .) Aapprox = |Axx|/[Xnl, eapprox = Axx/|Axq|
d (x -1 k? X
dt <y> = < 0 —1-— k> (y) IC x(0) =0y(0)=1 With this crude approximation invert
-1
has solution x = k(e t — e(1TK)?) (A= Aapprox)

which eventually decays but before is k larger than IC. which has one very large evalue  1/(Acorreet — Aapprox),

so power iteration on this converges very rapidly

Henceforth A real and symmetric
Find other evalues with p-shifts (A — p/)~!

Jacobi — small A only Main method

Step 1: reduce to Hessenberg H, upper triangular plus one below
diagonal

Arnoldi (GS on Kyrlov space g1, Aq1, A%qi, . ..)

Find maximum off-diagonal aj; Given unit q;, step k =1 — n— 1

Givens rotation Gj; with ¢ to zero aj;, and aji by symmetry v = Aqk
A" = GAG" has same evalues forj=1— k Hyx=gqj-v, v+ v— Hyg;
Hkk = |V‘

Does fill in previous zeros,

. qk+1 = v/Hrkr1k
but sum of off-diagonals squared decreases by afj * /Hher

Hence
Hence converges to diagonal (=evalues) form original v = Aqx = M1 kGrs1 + Hikqie + - .. + Hikqy

ie. A(q17q2)‘”)qn):(q15q27"'7qn)H
ie. AQ=QH or H=QTAQ with same evalues as A

Cost O(n?) if dense



H=QTAQ Hessenberg

A symmetric — H symmetric, hence tridiagonal
Hence reduce ‘for j =1 — k' to 'for j = k — 1, k',
Cost — O(n?) (Lanzcos)

NB: making gx+1 orthogonal to qx & qk—1
gives qx11 orthogonal to qj j = k,k —1,k—2,...,1

cf conjugate gradient

Main method, step 2

a. QR Find QR decomposition of H
Set HH = RQ = QTAQ
— remains Hessenberg/Tridiagonal
— off-diagonals reduced by A;/);
— converges to diagonal, of evalues

b. Power iteration — quick when tridiagonal
c. Root solve det(A — Al) = 0 — quick if tridiagonal

BUT USE PACKAGES



