Mathematical Tripos Part 11 E.J. Hinch
WAVES Lent 2013

Example Sheet 1: Sound Waves

1. Plane waves and radiation. A thin piston executes very small oscillations about x = 0 in a
long straight fluid-filled tube with cross-sectional area A and rigid walls aligned with the x-axis.
Given the piston velocity X (t), find the velocity potential ¢(x,t) for the (linearised) sound waves
generated in x > 0 and z < 0 (linearising X ~ 0). Show that if o > 0 the total power AI,
radiated across © = g is

(a(t — z0/c0)) o/ poA, (1)

where q(t) = poAX (t) is the rate at which mass is displaced on one side of the piston. What is the

corresponding result for o < 07 [Later in the course, we will analyse the effects of nonlinearity.]

2. Reflection and transmission. An interface at x = 0 separates fluid of density pg and sound speed
¢o in x < 0 from fluid of density p; and sound speed c¢; in « > 0. A plane harmonic sound wave is
incident from z < 0 with wavevector k = (k,0,0) and amplitude A (of its pressure perturbation).
What is the frequency w and the wavevector k’ of the transmitted sound wave in 2 > 07

Write down the form of the pressure perturbation in z < 0 and = > 0, find the corresponding
velocity potential and state the interfacial boundary conditions. Hence find the amplitudes of the
reflected and transmitted waves.

Assume wlog that A = 1. Verify that the time-averaged acoustic energy flux is conserved.
When is all the energy flux transmitted? How much is reflected if pg > p1 and ¢g ~ ¢17

3. Evanescent waves near an interface. Find solutions to the wave equation of the form

¢($, Y, t) - exp(ik:x - ZWt)f(y) ) (2)

where k > w/co > 0. Hence find the solution in y > 0 in which there is no disturbance as y — oo
and waves are forced by the inhomogenous boundary condition

v = Re [vg exp(ikz —iwt)] on y=0.

Here V¢ = (u,v,0) and vy is a real constant. Over what lengthscale do the waves decay away from
the boundary?

Calculate the time-averaged acoustic energy flux (I) and verify that:
(a) the energy flux perpendicular to the boundary y = 0 satisfies (I, ) = 0;
(b) the energy flux parallel to the boundary satisfies (I, ) = ¢(F) at any position y, where E is
the acoustic energy density and ¢ = w/k is the phase velocity in the x-direction. [Since ¢ < ¢y, the
disturbance and its energy travel subsonically along the boundary.)

*Assuming that surface tension and gravity are negligible, determine whether a non-zero
solution can exist in which evanescent sound waves propagate along both sides of a (force-free)
interface between two fluids with different physical properties in y < 0 and y > 0,

4. Acoustic waveguide. Find solutions to the wave equation of the form (2) for a region 0 <y < h
with a rigid boundary at y = 0 and a free boundary at y = h. (Take w > 0, but make no a
priori assumption about k.) Show that a wave can propagate in the z-direction only if w exceeds
a critical value w.. What happens if a disturbance is generated at x = 0 with frequency w < w.?
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5. Spherical waves and radiation. Explain why the general spherically symmetric solution ¢(r, t)
to the wave equation can be written as

1 (q(t—r/CO)+Q(t+7‘/CO)> ’ (3)

B 47 pg r T

where ¢ and @ are arbitrary functions. Assume from now on that there are only outgoing waves.
Calculate the radial velocity u, and the pressure perturbation p.

(a) By considering the volume flux through a sphere of radius € as ¢ — 0, show that ¢(¢) is the
mass flux out of r = 0. Show also that ¢ actually satisfies

V2 — g 2029 /0t” = q(t)3(x)/po , (4)

where ¢ is the Dirac delta function. (Hint: integrate (4) over r < € and let € — 0.) [The notation
in (3) is standard and motivated by the meaning of q. In the detailed calculations below, it may be
easier to write q/4mwpy = f.]

(b) Show that in the far-field, i.e. for ‘large’ r, the kinetic energy density K, the potential energy
density W, and the acoustic-energy flux I = pu, approximately satisfy the same equations, K = W
and I = (K + W)cp, as in a plane wave. Similarly, show that the total power radiated across a
‘large’ sphere of radius R is approximately

(q(t - R/CO))2/47TP000 : (5)

[The solution (3) with Q = 0 is called a point source, or an acoustic monopole of strength ¢(t).]

What does ‘large r’ mean for a time-harmonic source with ¢(t) = Re(goe®?)?

(¢) For the same time-harmonic source, show that ( K )/(W ) ~ (co/rw)? as r — 0 and find both
I, and (I, ) in the same limit. Comment on these results. Compare (1) with (5) for the case
A < (cg/w)?. (What does this condition mean physically?) [This is one of the principles behind
the ‘horn loudspeaker’.)

6. Harmonic series. Explain why (3) describes a possible acoustic disturbance in a conical tube of
any cross-sectional shape. Model an oboe (with all the finger-holes closed) as a small-angle conical
tube of length ¢: at the narrow end the cross-sectional area is effectively zero and p is finite; the
larger end is open and p may be assumed to be zero. [This is a good approzimation only if the
radius of the larger end is much less than co/w.] Show that the instrument has a set of normal

modes (i.e. standing-wave solutions of the form R(r)e~™!) with frequencies
wl/co=nw (n€Z). (1)

If, instead, the larger end is closed, so that the radial velocity is zero there, show that the corre-
sponding normal-mode frequencies are the solutions of

wl/co = tan(wl/cy) . (1)

Find approximate solutions of (1) in the high-frequency limit. [The set of frequencies (T) forms a

musical ‘harmonic series’, while the set (1) does not.]
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7. An oscillating bubble (Tripos 93124). A bubble makes small spherically symmetric oscillations
in a compressible inviscid fluid. When the radius a(t) is perturbed slightly from its mean value ay,
the internal dynamics of the bubble produces a pressure —k(a — ag) on the bubble surface. Derive
the linearised equation of motion for the oscillations

.. Rag .

Poloa + ?Oa + KZ(G - a()) =0 s
0

where pg is the undisturbed density of the fluid and ¢y is the sound speed (you may quote results

from question 5). What is the mechanism of energy loss from the oscillations represented by the

‘damping’ term in this ODE for a?

8*. Images. Explain briefly how the method of images can be used to find the sound field produced
by a point source placed either near a plane rigid boundary, or in the corner between two plane
rigid boundaries at right-angles (i.e. find an image system that satisfies the boundary conditions).

For each case, use the results of 5(b) to write down an approximation to the time-averaged
total power radiated by a time-harmonic point source if the distance of the source to the boundaries
is much less than a wavelength. Will a whistle sound louder if blown near a wall?

9*. Source with boundaries. A point source (monopole) is placed at x = x( inside a straight
semi-infinite tube aligned along the positive z-axis with a closed end at z = 0 and cross-sectional
area A. By integrating (4) with d(x) replaced by d(x — X¢), and using the boundary conditions,
show that the cross-sectional average potential

dat) = [ [odya:

Fo 1970 q(t)

satisfies

[Hint: Recall §(x) = 6(x)d(y)d(z).] What conditions should be imposed on ¢ and d¢/dx at x = 0,
T = xg and as T — 00?
wwt

For a time-harmonic source, ¢(t) = goe™" (real part understood), show that

icoqo exp{iw[t — (z — zg)/co] }
wpoA 1+ itan(wxg/co)

%=

inx > xg.

If A< (cp/w)?, why it is reasonable to assume that the sound field is almost one-dimensional
(i.e. ¢(x,t) = d(x,t)) except near x = zo? Making this assumption, show that if 2o < co/w (what
does this mean physically?) then the time-averaged power radiated across a section in x > xq is

the same as the time-average of (1) for this ¢(¢) and a large factor 4mc3/w? A bigger than (5).



