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WAVES Lent 2013

Example Sheet 2: Elastic Waves and Dispersive Waves

1. Elastic energy. Write down the relationship between stress and strain in a linearly elastic solid.
Hence express the elastic energy W = 1

2eijσij in terms of the strain and the Lamé moduli. Show
also that W = 1

2 (κe2kk + 2µe′ije
′
ij), where e′ij = eij − 1

3δijekk is the traceless part of the strain and

κ = λ+ 2
3µ is the bulk modulus. [Thermodynamic stability implies that elastic deformation should

require work rather than release energy, hence that W > 0, hence that κ, µ > 0.]

2. Energy and fluxes. A plane S-wave has displacement u = g(k̂·x − cSt), where k̂·g = 0 and

|k̂| = 1. [Derived from a shear potential ψ = f(. . .), with g = k̂ ∧ f ′.] Show that K = W and

I = (K +W )cSk̂.

Find the time-averaged energy flux vector 〈 I 〉 for (i) a plane harmonic S-wave with u =

B cos(k·x − ωt), (ii) a plane harmonic P-wave with u = Ak̂ cos(k·x − ωt) and *(iii) a linear
superposition of the waves in (i) and (ii) for the case that they have the same frequency ω and

travel in the same direction k̂. [Use parallel, but unequal, wavevectors kS and kP.] Can the separate
averaged energy flux vectors in (i) and (ii) be added to give the flux vector in (iii)?

3. Reflection at a fluid–solid interface. Plane harmonic elastic/sound waves are incident on a
plane interface between a homogeneous elastic solid and a homogeneous inviscid liquid. Sketch
the situation for each of the possible combinations of incoming direction (from fluid or solid)
and incoming wave type (P , SV or SH), showing the directions and type of the outgoing waves
(assuming none are evanescent).

Write down the boundary conditions for a fluid–solid interface and explain why these would
provide the right number of conditions for each combination to solve for the unknown amplitudes
if needed. Under what conditions would a P-wave (sound wave) incident from the fluid result in
both an evanescent wave and a propagating wave in the solid.

4. Reflection of a SV-wave. A solid with elastic wavespeeds cP and cS occupies the region z < 0
and is bonded to a rigid boundary at z = 0. An SV-wave with displacement

u = B(cos θ, 0,− sin θ)eik(x sin θ+z cos θ)−iωt

is incident from z < 0. Find the form and amplitudes of the reflected waves. If sin θ > cS/cP show
that the solution consists of a reflected SV-wave together with an interfacial P-wave.

For sin θ < cS/cP, write down the time-averaged energy flux vector for each wave separately
(using results from lectures and/or question 2) and show that their z-components sum to zero.
What happens if sin θ > cS/cP?

5*. Normal modes for an elastic sphere. A homogeneous elastic sphere of radius a undergoes
radially symmetric motion with displacement field u(r, t) = (ur, 0, 0) in spherical polar coordinates.
Starting from the vector equation of motion, show that y(r, t) ≡ r(∇·u) obeys the one-dimensional
wave equation ÿ = c2Py

′′. Hence find the solution for ∇·u that has frequency ω and is nonsingular
at the origin.

By first integrating this solution to obtain the displacement ur and then imposing a stress-free
boundary condition at the surface, show that the eigenfrequencies corresponding to normal-mode
‘free’ oscillations of the sphere are given by

Ω cot Ω = 1− c2PΩ2

4c2S
, where Ω =

ωa

cP
.

Note: in spherical polar coordinates, σrr = (λ+ 2µ)(∇·u)− 4µur/r and ∇·(g(r), 0, 0) = (r2g)′/r2.

What is the high-frequency limit for ω?
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6. Stoneley waves. Extend the analysis of Rayleigh waves given in lectures to examine the prop-
agation of surface waves (whose amplitudes decay away from the interface in both directions) at
the interface z = 0 between a homogeneous elastic solid and a homogeneous elastic fluid.

With a fluid density ρ̄ and a fluid sound speed c̄ you should find the analogue of Rayleigh’s
equation as

c4

c4S

ρ̄

ρ

(
1− c2/c2P
1− c2/c̄2

)1/2

= 4
(
1− c2/c2P

)1/2 (
1− c2/c2S

)1/2 − (2− c2/c2S)2 .
*Show that this equation has a solution. [Hint: recall that cS < cP, and consider the behaviour

of the left- and right-hand sides as c→ 0 and c→ min(cS, c̄).]

7. SH waves in an elastic layer. Consider the propagation of SH waves in a planar elastic layer
with shear modulus µ and shear wavespeed cS. Suppose that the layer has thickness h, and that
the boundaries at z = 0 and z = h are both free surfaces. Derive the dispersion relation for modes
of the form uy = exp(ikx − iωt)f(z). Verify that in an average sense (to be made precise), the
wave energy flux is equal to the wave energy density multiplied by the group velocity cg.

8. Love waves under a rigid surface. An elastic layer of thickness h, shear modulus µ̄ and shear
wavespeed c̄S, has a rigid upper boundary, and overlies a uniform elastic half space with shear
modulus µ and shear wavespeed cS (cS > c̄S). Find the dispersion relation for Love waves (SH
waves) of frequency ω and wavenumber k in this structure. Determine the cut-off frequency for
each mode, and the limiting phase velocity for high-frequency propagation. Sketch graphs of the
phase velocity c, frequency ω and group velocity cg as functions of wavenumber k. [Hint: it may
be helpful to consider limiting slopes near cut-off and at large k.]

9. The Klein–Gordon equation. The transverse displacement η(x, t) of a stretched membrane of
mass density m and tension T supported by springs with spring constant K and subject to a
forcing f(x, t) per unit length, is governed by the Klein–Gordon equation

m
∂2η

∂t2
− T ∂

2η

∂x2
+Kη = f .

Show that, for any x1 and x2,

d

dt

∫ x2

x1

(
1
2mη̇

2 + 1
2Tη

2
x + 1

2Kη
2
)
dx =

∫ x2

x1

fη̇ dx+ F (x1, t)− F (x2, t),

where F (x, t) = −T η̇ηx. Give a physical interpretation to each term.
For an unforced membrane (f = 0), find the dispersion relation for harmonic waves and sketch

graphs of frequency, phase velocity and group velocity against wavenumber. [The time-averaged
energy flux is again equal to the time averaged energy density times the group velocity cg.]

10. A causal solution where the wavecrests move toward the source. What is meant by a ‘radiation
condition’? Show that the solution of

∂4ψ

∂x2∂t2
− α2ψ = 0, α > 0,

that corresponds to steady propagation into 0 < x < ∞ of waves generated at the origin by the
boundary condition

ψ|x=0 = ae−iωt ,

is
ψ = ae−iω[t+(αx/ω2)] .

[A physical system to which this problem corresponds is that of a vertical tube (x vertical), contain-
ing a density-stratified fluid; this acts as a waveguide for internal gravity waves whose wavelength
2π/k is short compared with the dimensions of the tube.]

2


