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— accuracy, stability, pressure

> Better treatment of general issues

— discretisation, time-stepping, linear algebra

» Collection of special topics

— demo FreeFem, hyperbolic, fast multipoles, free surface
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1. The driven cavity

Incompressible Navier-Stokes

V.-u=0,
(gl:—i-u Vu) = —Vp+ uVau,

2D, L x L-box
u=0 ony=0and0<x<L,andonx=0o0orLand0<y <L,
and u=(U(x),0) ony=~Land 0<x< L.

To find the force on the lid
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Know your physics

Before writing any code, need to think about physics
Converse, thinking about coding can deepen understanding of
physics

Ju
> W—i—u-Vu

info propagates at u, i.e. dx = udt.
> p% = Mv2u
info diffuses, diffusivity v = u/p, i.e. dx = Vvit.

> p%:—Vp with V.-u=0
info at oo in 0 time, i.e. speed of sound = co.
> » Re < 1 must resolve fast diffusion of vorticity,

» Re > 1 must resolve thin boundary layers,

» we study Re = 10.
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What is well-posed? Equation 4+ BCs + ICs. Wrong BC: # solution

> 92 1 u(x,t)%2 = f(x,t) — first order hyperbolic
Well posed with
IC ¢(x,0) and
inflow BC, e.g. at x = a need ¢(a, t) if u(a, t) > 0.

> % = c2% — second order hyperbolic
Well posed with
IC ¢(x,0) and ¢¢(x,0) and

BC at both ends either ¢ or ¢, or mixed.
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» V2¢ =p - Laplace/Poisson equation, elliptic
Well posed with
BC ¢ or ¢/dn or mixed

> % = D% — Diffusion equation, parabolic
Well posed with
IC ¢(x,0) and

BC at both ends either ¢ or ¢, or mixed.
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» Naming from quadratic forms

ax2+bxy+cy2+dx+fy+g:0

¢ o¢ 99 —

» Numerically
> hyperbolic — tough
> elliptic — costly

» parabolic — safest
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Special physics — the corner

» Constant lid velocity u = (Up, 0)

1

— o r- — F =

» Better u = (Upsinmx/L,0)

— o xInr — F difficult numerically

» Therefore we take u = (Upsin?7x/L,0)
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Non-dimensionalisation

Engineers use dimensional variables in computations
but scientists do NOT.

Scale uon Ug, x and y on L, t on L/Ug and p on pU3. Then

inertial terms pUZ /L Upl

Re = — 5 = .
viscous terms puUp/L v
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The non-dimensionalised problem

V-u=0,
(gl; +u- Vu> =—-Vp+ %Vzu,
with BCs
u=0 ony=0and0<x<1l andonx=0orlandO0<y<1
and u = (sin®(7x),0) ony=1and0 < x < 1.
We take ICs
u(x,0)0=0 att=0for0<x<land0<y<1l
We seek solution at Re = 10.

Finally the force, scaled by uUy

L ou
F:/
o Oy

dx.
y=1
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Steady State vs Initial Value Problem

EJH recommends IVP, linear.
SS — nonlinear, might not exist, might be unstable.
Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different Re — crude
parameter continuation.

Methods for relaxing to SS = pseudo time-stepping.
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Pressure!

Idea: time-step u(x, t) from t to t + At
using du/0t from the momentum equation

But how to find Vp?

Pressure = “Lagrangian multiplier” associated
with constraint V- u = 0.

Two options:
» Find the Vp that ensures V-u =10
— primitive variable formulation

» Eliminate p by forming the vorticity equation
— streamfunction-vorticity formulation
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2. Streamfunction-vorticity formulation

Automatically satisfy constraint V-u =0
by using the streamfunction representation ¥ (x, y)

_ oY _ oy
u= dy and V=
In 2D flow vorticity is
_Ov_Ou_ —V24.



Vorticity equation

Take curl of momentum equation to eliminate p

1
aﬁ—f—u-Vu):O—i—f

2
ot Rev w



Vorticity equation

Take curl of momentum equation to eliminate p

ow 1 _,
E—i—u-Vu)—O—i—EV w
No stretching in 2D (first term on RHS)
O(w, )

u-Vw = ,wx — Pyw, =




Vorticity equation

Take curl of momentum equation to eliminate p

ow 1 _,
E—i—u-Vu)—O—i—EV w
No stretching in 2D (first term on RHS)
O(w, )
u-Vw = Yywy — hxw, =
g T 0(xy)

BC1l: u-n =0 all sides
— sides = streamline — ¥ =0.




Vorticity equation

Take curl of momentum equation to eliminate p

Ow 1
E‘FU-VM—O‘FE

No stretching in 2D (first term on RHS)

V2w

u-Vw = ywyx — hywy, = 0w, v)

BC1l: u-n =0 all sides
— sides = streamline — ¥ =0.

BC2: tangential velocity
2

?—y:sin mxontopy=10<x<1
%:Oon bottom y =0,0< x <1
oY

W:Oonsidesx:Oand 1,0<y<1



Solve as decoupled pair

1. At each t given w, find 1):
V2 = —w

with ¢ = 0 all sides.



Solve as decoupled pair

1. At each t given w, find 1):
V2 = —w
with ¢ = 0 all sides.

2. With w and now 1 known at t, find w at t 4+ At:

w 0w, ) | 1
ot 9(x,y) + F\’ev v

with w on boundary so g—f correct



Solve as decoupled pair

1. At each t given w, find 1):
V2 = —w
with ¢ = 0 all sides.

2. With w and now 1 known at t, find w at t 4+ At:

w 0w, ) | 1
ot 9(x,y) + F\’ev v

with w on boundary so g—f correct

— not quite decoupled.



