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Driven Cavity, with u = sinZ Tx on top.

Streamfunction-vorticity formulation:
1. At each t given w, find 1):

V2h = —w

with ¢ = 0 all sides.
2. With w and now % known at t, find w at t + At:

%__8(1#’("}) i 2
ot~ olxy)  Re' ¥

with w on boundary so g—f correct

Physics of the Navier-Stokes equation, corner singularity,
non-dimensional, classification PDEs, proper IC/BC

Attempting numerical solution reveals poor understanding of
question (physics and maths).
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2.2 Finite differences — simple

Later, Part Il on more sophisticated finite differences, as well as
finite elements and spectral representation.

Finite computer — finite representation: spot data

WZ' ~ w(x = /'Ax7y :jAX7 t= nAt).

fori=0,1,...,N,j=0,1,...,Nand n=0,1,2...

Square mesh with Ay = Ax.
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Approximation of derivatives

fis1 — 1
Forward differencing f/ = % + O(Ax)
X
fi — fi-
Backward differencing f/ = A L _0(ax)
X
for—f
. . ’ i+1 i—1 2
Central differencing f/ = T oAx + O(Ax?)

Curvature error cancels in central difference
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Second derivative f”

f'/l%fH—l—fi _ ﬁ,_l%ﬁ'—fi—l
f//-N i+3 Ax =3 Ax

Ax
fiyn —2fi+ i1 ’
= A2 + O(Ax?).
Note fiio— 2f 4 f
f”,- -/ /: i+2 — &I i—2

7 ( ’) 4Ax2
— error 4 times as large.
Also

(ab); # atb; + a;b.
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Local error analysis

by Taylor series

fir1 = f(x=iAx+ Ax)
— f,'—l—AXf;-/—l- %Ax2ﬁ"+%Ax3f;"’+ ;jAX4ﬁ/,//+...
Hence

i1 —2f+fii1= Ax2f;-” + %AX‘lﬁ""_

Try to use central differences, so O(Ax?) in spatial differentiation.

Forward time differencing adequate for driven cavity — see later.
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Laplacian

¢ij+1 21;Z)I_/+¢Ij 1

(V2¢), ¢l+lj 27/}ij +'¢iflj

ij Ax? +

Ax?
written with a ‘numerical molecule’
1

1



2.3 Poisson problem: V29 = —w
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2.3 Poisson problem: V29 = —w

At interior points, i=1—>N—-1,7=1— N —1, solve
1 1
N 1 -4 1)¢;=—wj,
1
with boundary conditions
p=0fori=0&N,j=0— Nandforj=0&N,i=0— N.

Large problem in linear algebra
90% CPU of most programs — worth a good method
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Simplest — Gauss-Seidel

Sweep through interior

j=1: i=1-N-1 T
j=2: i=15N-1
1 ~
j=N-1: i=1=-N-1 \

and then repeat.

+

1
new old new old new 2 .
ij —Z< i+1j+ i—1j+’lz)ij+l+¢ij—l+Awa>'

To converge need O(N?) iterations/compete sweeps
— O(N*) operations.
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A little better — Successive Over Relaxation

=01 r)1/1°1d + r{above expression for ;™ }.

0 <r<1 under-relax
r=1 Gauss-Seidel

1<r<2 overrelax
r>2 unstable

Optimal (for this problem and large N)

2

r = .
1+ %

With optimal r need 2N iterations for 4 figure accuracy
— total cost O(N3) operations.
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2.4 Test code

1. w=0—1vy =07
» Check loops — range-checking option of compiler
» Compile of two types of machine — uninitialised variables

2. w=2n?sinTxsinmy — 1) = sinmwxsinwy?
» Plot ¥(x,y) — shape OK? magnitude correct?
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Test code 2

> ¢(%, %) vs number of iterations
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iteration

For N = 20 Gauss-Seidel needs 500 iterations,
whereas SOR with optimal r = 1.75 needs 20.
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3. Variation with Ax of maximum error

Error = ’;‘r‘?&( w}:’;umerlcal o ¢theory(iAX,jA) ’
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error

0.004
0.003
0.002

0.001
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Test code 4

For this test problem, max error =~ 0.85Ax?
Hence

1% error (normal working) at N =10
103 error (if really needed) at N = 28

But CPUyg ~ 20CPU1q
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2.5 Code Quality

One-off code (written today, used today, never again): simple,
clear layout, no tricks
Production code:

» Comments on most lines

» Test for problems, halt with helpful message
» Bullet-proof — no indirect action

» Fast and efficient

EG avoid repeating same calculation, so first set r1 =1 —r,
r025 = 0.25r and h2wj;; = hzw,-j. Then

1
by =l +r025 | [ 1 1| oy + h2wy | |
1

Packages: NAG, LAPACK, matrix routines
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2.6 Simple graphing

Program writes out table: on ith line x;, y;, and z; if contouring.
Pipe output to a results file a.out > res.

Public domain simple graphs gnuplot.

Line diagrams y(x): > plot 'res’ with lines

— (auto)scale, label, logs, multiple plots

Contour plots z(x,y): > splot 'res’” w |

Many options: list with egs: > help.
End: > quit



