Resumé of lecture 2

Driven Cavity in t¢)—w formulation.
Finite Differences
Poisson problem. SOR.

Test against theoretical solution: O(Ax?) error?
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ow  Ow,y) | 1
ot = dxy) TRV

with w =0 at t = 0.

Forward time-step from t = nAt to t = (n+ 1)At
at interior points i =1 —-N-1,j=1—->N-1

w
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n+l _ n 1~ V1w Wity
ii = w,-j + At —
4 2Ax 2Ax

i1 — Wil Wi — Wi n At 1
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On boundary need i = 0, and value of w

—4

1

)



Boundary condition on w — so that g—lﬁ = Ugan



Boundary condition on w — so that g—f = Ugan

For bottom y = 0:
_ Y — Vio
Ax

u

N=



Boundary condition on w — so that g—f = Ugan

For bottom y = 0:

Uy — i1 — Yio
2 Ax
SO
us — Usvanl
wip = ————mm

Ax

Bl

1
2



Boundary condition on w — so that g—f = Ugan

For bottom y = 0:

Uy — i1 — Yio
2 Ax
o)
us — Uwan
w1 = T
4 iAX
1st order BC o
% - Uwall
Wwo =R WL = 1
4 sAx



Boundary condition on w — so that OuRE Uwan

aon
For bottom y = 0:
Uy — i1 — Yio
2 Ax
so
ur — Uyan
w1 =2 ——
4 iAX
1st order BC
e wll 111/0 — Ugall
R WL = ———g
4 %Ax
2nd order, by linear extrapolation
dwi —wy
&z

%

wo 3



Boundary condition on w — so that g—f = Ugan

For bottom y = 0:

Uy — i1 — Yio
2 Ax
o)
us — Usvanl
Wi =
4 iAX
1st order BC — w
wn A w Il 0 Uwall
0 ~ l = -
4 %Ax

2nd order, by linear extrapolation

dwi —wy
S

3

%

wo

Starts at t = 0 as numerical delta function, then diffuses.
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plot w for Re = 10 at t = 0.525 with At =0.035 and Ax =0.1
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Numerical or physical instability?

Not physically unstable at Re = 10 surely?
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Time step instability 2

Checker board pattern.
+ |- |+
— |+ = w}} = (_)H_jAn:

+ = |+

Diffusion terms in time-stepping algorithm

At

Apir = Ap+ —— . —
n+1 n+ReAx2

8A,

Stable if At < %ReAx2 — at least one At to diffuse one Ax.

EJH works at £.
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Advection instability — CFL condition

(Courant-Friedricks-Lewy)

Stable if At < Ax/Unax — at least one At to advect one Ax.

Must resolve boundary layers
Dimensional: UpaxAx/v < 1 < Nondimensional Ax < %.
This + stable diffusion = stable advection

Total cost to t =1
1
<# time stepsA—t o N2> X (cost per time step (SOR) N3)

x N°®

Hence doubling N is 32 times longer, quadruple N is 1024 longer.

'Better’ time step algorithms — larger At, but more accurate?
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No analytic solution to test — test code has designed accuracy
O(At, Ax?).

Forward differencing — O(At) errors.
Look at w(x = 0.5,y = 0.5,t = 1) — exactly (0.5,0.5,1)
1st order BC for wg with Re = 10 and N = 10, 14 and 20.

-0.626
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-0.628
-0.629
-0.63

= -0.631
-0.632
-0.633

-0.634
0635+,
-0.636

0.005 0.01 0.015 0.02

Note: linear in At, very very small At (larger unstable),
Large errors in Ax — 2nd order BC for wq better?
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2nd order BC for wg with Re = 10 and N = 10, 14 and 20.

-0.6365

-0.637

-0.6375

z -0.638

-0.6385

-0.639

-0.6395
0 0.005 0.01 0.015 0.02

dt

Much smaller errors from Ax.
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Well matched design

Errors for this problem are 2nd order in Ax and 1st order in At,
but stability has At = %ReAx?
Hence time errors O(At) ~ space errors O(Ax?)

Hence no need for second-order time-stepping.
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Accuracy consistence. b. Overall O(Ax?)

Set At = 0.2ReAx?. Plot w(0.5,0.5,1) at Re = 10
for N =10, 12, 14, 16, 18, 20, 24 and 28.

-0.6387

-0.6388 7
-0.6389
= 0639
-0.6391

-0.6392

-0.6393

0 0.002 0.004 0.006 0.008 0.01
dx2

Linear in Ax?. Result: w(0.5,0.5,1) = —0.63925 + 0.00005.

Note linear extrapolation in Ax? from N = 10 and 14 gives same
accuracy as 28 at 3% the CPU.
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Vorticity at centre of box as a function of time, with N = 20 and
Re = 10.
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Steady to 10~* by t = 2, time to diffuse across box.
For steady state, try reducing to 3 SOR per time step in place of N.
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Results: steady streamfunction

At t =3, Re =10 and N = 40.
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Weak reversed circulations in bottom corners



Results: steady vorticity

At t =3, Re =10 and N = 40.

=
X
)
i
o
D
QY
U

)
)
:,:o
i
2

"
ol
o0

%

o

W

0%

X

)
7
%

O

oo
X2
5
X
%
i

%

%
5
%
X504

0
X
o
o

5
%
5K
%
"
o

2%
9
%
5
:'0
5
2%
%
o
Y
2
W

[,
7
%
%
%
s
%
%
ol
s
f
g

2227
S e
~,'...,:'. S

W e

g
%
%%
%
o

X

%
%
K5
5%

%
%
K5
5%
%
0%

4
%

%
002%%
0o

o,
o

S S S e gt~
© R 72
s QR 7%
B S L7 777
10 X .Q.'... 17777 17

&

o




Results: steady vorticity

At t =3, Re =10 and N = 40.
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Slight asymmetry downstream
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Results: steady mid-section velocity u(0.5,y)

_ Yijr1 — Yij
Yty T T ax
At Re = 10, with N = 10, 14, 20, 28,40.
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1 N 92
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With O(Ax) error
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Force on lid

1 N 52
F:/ u dx =~ 8—15 Ax.
G 5 O =
With O(Ax) error
02 02 iN— 29N P N—
7121 %7121 _ Yin ¢N21+¢,N 2 L 0(Bx).
Ay =N Oy =N-1 Ax
For O(Ax?), linearly extrapolate to boundary
Pol L 0 0%
9y? |j—n 0y limn-1 0% ljmn—2
2¢in — SYin—1 + 4 N2 — i N_3 2
= N + O(Ax?).

Check: ¥ =1,y,y?,y3 = 0,0,2,0



Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.
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Results: force on lid

At Re = 10 for N = 10, 14, 20, 28, 40 and 56.
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The final answer for the force is

F =3.905£0.002 at Re=10.
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Results: early times

Simple \/vt solution. Plot F/+\/t/Re
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for N = 40, 80, 160 and 320.

Failure: Code not designed for v/t behaviour.

Note 0.33, 0.319, 0.307 — ﬁ = 0.281 with 0.4Ax/2 error.



