
Spectral methods – a quick review

For very simple functions, C∞

in very simple geometries, Cartesian

Remarkably accurate

I error decreases like e−kN

I only 3 modes per wave for 1% accuracy

cf FD 40 pts at O(∆x2), 20 pts at O(∆x4)

Differentiation exact to shortest mode

Trivial Poisson solver

time consuming transform and nonlinear terms
Sometimes FAST transform + less modes needed → competitive
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Two idea - as in FE

Spectral representation

u(x , t) =
N∑

ûn(t)φn(x)

with amplitudes un(t) and basis functions φn(x), e.g. Fourier

Galerkin approximation “weighted residuals”. For PDE

A(u) = f

require residue to be orthogonal to each φm:

〈A(u)− f , φm〉 = 0 for m = 1, . . . ,N
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Local vs Global

E.g. for Fourier

u(x) =

∫
e ikx û(k) dk û(k) =

1

2π

∫
e−ikxu(x) dx

Differentiation - global operator in real space

d̂u

dx
= ikû(k) local in Fourier space

Exact to shortest mode, cf FD f ′i =
fi+1−fi−1

2∆x = 0 for fi = (−1)i .

Poisson problem

d2u

dx2
= ρ expensive global problem in real space

−k2û = ρ̂ local in Fourier space
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Local/Global continued

Nonlinear terms and spatially vary coefficients

u(x)v(x) local in real space

ûv(k) =
1

2π

∫
l+m=k

û(l)v̂(m) global in Fourier

Numerically

local = cheap global = expensive

Navier-Stokes has both local & global in real or Fourier – need
compromise
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Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.

Needs three transforms →

û → u

û →∇̂u→∇u u · ∇u
↑ ↓
˙̂u ←p̂ ←û · ∇u

Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.
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Choose real points optimally.

Alternative method of satisfying PDE at collocation points rather
than in Galerkin projection.



Pseudo-spectral
combines Fourier and real space operations

Evaluate the nonlinear term in real space, and in Fourier space
evaluate derivatives and invert the Poisson problem.
Needs three transforms →
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Choice of spectral basis function φn(x)

1. complete

2. orthogonal for some weight w

〈φnφm〉 =

∫
φnφmw(x) dx = Nnδnm

3. smooth

4. fast convergence

5. FAST transform

6. satisfy boundary conditions

Strongly recommend

I Fully periodic → Fourier, e inθ

I Finite interval → Chebyshev Tn(cos θ) = cos nθ
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Chebyshev polynomials

Tn(cos θ) = cos nθ

Orthogonal with weight w(x) = 1/
√

1− x2

∫ 1

−1
Tm(x)Tn(x)w(x) dx =


0 if n 6= m

π if n = m = 0
π
2 if n = m 6= 0

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1

(1− x2)T ′′n − x T ′n + n2 Tn = 0

Tn+1 = 2xTn − Tn−1

2Tn = 1
n+1T

′
n+1 − 1

n−1T
′
n−1
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Fourier series

Fully periodic (really defined on a circle):

f (k)(0+) = f (k)(2π−) for all k

Then Fourier series

f (θ) =
∞∑

n=−∞
f̂ne

inθ

with

f̂n =
1

2π

∫ 2π

0
f (θ)e−inθ dθ

– awkward 1
2a0 if use sines and cosines.
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Rates of convergence

If f (θ) has k-derivatives,

integrate by parts k times

f̂n =
1

2π

ik

nk

∫ 2π

0
f (k)(θ)e−inθ dθ

Thus series converges rapidly with f̂n = o(n−k) (RLL).

If f (k) has one discontinuity, f̂n = O(n−k−1)

If f ∈ C∞, f̂n = e−kn – exponential convergence

E.g.

f (θ) =
∞∑

m=−∞

1

(θ − 2πm)2 + a2
→ f̂n =

π

a
e−|n|a

– convergence controlled by singularity of f (θ) in complex θ-plane
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Gibbs phenomenon

Discontinuity → poor
∑ ±1

n convergence

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

6 terms

11 terms

21 terms

with point-wise convergence
but 14% overshoot within 1

N of discontinuity
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Finite interval

If f (k)(0+) 6= f (k)(2π−), then hidden discontinuity at boundary
→ Gibbs problem, with slow convergence.

Use Chebyshev Tn(x) = cos nθ

Stretch x = cos θ makes odd derivatives vanish

f̃ (θ) = f (cos θ) → df̃

dθ
= sin f ′

Hence function | x | on −1 < x < 1
becomes fully 2π periodic in −π < θ < 0
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Discrete Fourier Transform (DFT)

Odd N = 2M + 1.
Equi-spaced collocation points θj = 2πj

N for j = 1, . . . ,N

Discrete approximation f̃n to Fourier f̂n

f̃n =
1

N

N∑
j=1

f (θj)e
−inθj n = −M, . . . ,M

Note for later: e−i(N+k)θj ) ≡ e−ikθj , so fN+k = fk

Let ω = e i2π/N the N-th root of 1, so
∑M
−M ωn = 0

Then

M∑
n=−M

f̃ne
inθ =

N∑
j=1

f (θj)

[
1

N

M∑
n=−M

e in(θ−θj ) =

{
1 if θ = θj

0 if θ = θk 6= θj

]
= f (θj) if θ = θj
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Runge phenomenon

Fitting polynomial through equi-spaced points can be badly wrong
in between fitting points.

-4

-2

 0

 2

 4

-1 -0.5  0  0.5  1
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However DFT well behaved, because effectively Chebyshev
polynomials fitted at points xj = cos(πj/N) – crowed at ends.
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Aliasing
– counter rotating wagon wheels in strobe light

High (N + k) frequency, e.g. g(θ) = e i(N+k)θ,
appears in DFT to be erroneous low k frequency:

g̃k =
1

N

N∑
j=1

g(θj)e
−ikθj = 1

E.g. N = 10 equispaced points cannot distinguish between sin θ
and − sin 9θ
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De-aliasing

Aliasing makes high frequency tail

of exact Fourier modes f̂n in n > M

appear to DFT f̃n

as low frequency modes at −M + n.

De-alias: Chop spectrum to −2
3M < n < 2

3M,

so nonlinear terms can produce new 2
3M < n < 4

3M

which are then chopped so as not transfer to low frequencies.

In 3D throw away 19
27 of the modes.
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Fast Fourier Transform

DFT calculation for n = −1
2N, . . . ,

1
2N

f̃n =
N∑
j=1

f (θj)ω
nj , with θj =

2πj

N
and ω = e iθ1

looks like N coefficients × sum of N terms = N2 operations.

But

=

N/2∑
k=1

f (θ2k)ωnk
2 + ω−1

N/2∑
k=1

f (θ2k−1)ωnk
2 with ω2 = ω2

which is 2 lots of DFT on 1
2N points 2( 1

2N)2 = 1
2N

2 operations

If N = 2K , can half K times → N ln2 N operations.

Program: identify even/odd at each 2n-level n = 1, . . . ,K ,
i.e. binary representation of j
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Orzsag speed up in two dimensions

M∑
m=1

N∑
n=1

amnφm(xi )φn(yj)

looks line MN terms to sum at MN points (xi , yj)

But
M∑

m=1

amnφm(xi )

is common to each (xi , ∗) point, → save factor of M operations.

Also FFT speed up
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Differential Matrix

To differentiate data with exponential accuracy

f (θj)
transform−→ f̃n

differentiate−→ nf̃n
transform−→ f ′(θj)

But transforming is a linear sum, so

f ′(θi ) = Dij f (θi ) with differentiation matrix D

FFT factorisation can make N lnN instead of N2

2pts→ 2nd order in FD→ error N−2

4pts→ 4th order in FD → error N−4

Npts→ → error N−N

NB D(2) 6= DD
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Navier-Stokes

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p + ν∇2u

Fourier transform

ik · u = 0

∂û

∂t
+ û · ∇u = −ikp − νk2û

Eliminate pressure

∂û

∂t
= −

(
I− kk

k2

)
· û · ∇u− νk2û

with û · ∇u by pseudo-spectral real space evaluation
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Boundary conditions

If homogeneous BCs, recombine to satisfy BCs

φ2n = T2n − T0 and φ2n−1 = T2n−1 − T1

OR impose BC (“tau” method)

N∑
n−1

f̃nTn(±1) = BC

Crowding of points → time-step limitation

For ut = Duxx on [−1, 1]

1/N2 crowding of xj = cos θj near ±1
→ stability if ∆t < D/N4
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Bridging the gap

Local Global

Finite Elements FE hp

Finite Differences Spectral
point data whole interval

Splines Wavelets
global points local waves
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