Hyperbolic equations

Avoid numerically

» Advection + diffusion
OK if Ax < D/U. Then DAt < Ax? gives UAt < Ax

» Advection + reaction
OK if Ax < Ut. Then UAt < Ax gives At < T
> Pure Advection
» Problem 1 conserve past numerical errors

» Problem 2 shocks = unresolved boundary layers = rarefaction

waves and discontinuities <— unfriendly to high-order schemes

Hint: Reformulate with characteristics, i.e. Lagrangian



1. Simple smooth advection

uy + cuyx = 0,

and smooth initial condition

u(x) = 4(x —1)°(2-x)® in 1 g x <2,
0 otherwise.

Take ¢ constant, > 0.
Generalise to ¢(x), c(x, u) and vector u(x, t)

Finite differences easier for cooperation of spatial and temporal
discretisations.

Write
uj = u(x = lAx, t = nAt).



1.1 Simplest - unstable

First-order in time, central second-order in space

n+1
n+1 n n _ .n
Uy — =y Upg — U g

At 2Ax n X

ct =0.0(0.2)1.0
Ax = 0.05
cAt = 0.0125

Unstable



Stability analysis

Set uf) = A"e’**Ax (Fourier wave). To find A(k)
Algorithm — A =1 — ipsin 6 with ¢ = £% and 6 = kAx.

Then |A| > 1 all g,

i.e. unstable all At.

— H _ T
Most unstable = short wave zigzag 0 = 5

with |A| = /1 + 42

e un~ (14 p?)t/2Ae,



1.2 Lax-Friedricks — too stable

Replacing uj in the time derivative n+1
by average 3(uf,; + uf_,).

/-1 {+1
1 cAt 1 cAt
1
bt =3 <1 - m) ity <1 + Ax) i1

Stability analysis vy = AN eiktDx

At
A=cosf —iusinf with u = CA—X and 6 = kAx

i.e. stable |A| <1 all 6 if

At
= CA— <1 CFL condition (Courant-Friedricks-Lewy)
X

Information propagates less than Ax in At



Lax-Friedricks — too stable

Plots ct = 0.0(0.2) 1.0, Ax = 0.05

unstable p = cAt/Ax =1.1 stable u = 0.5

Stable but very damped



Longwave error analysis

Taylor series
Uy = up A+ Dxuc ]+ AP U f + .,
ungl =u] +Atuey + %Atzutg—i—....
Algorithm + Lax trick ug = %y

Ax?
At Usex -

Numerical diffusion

up = —cuy + (1 — %)

ct =0.0(0.2) 1.0

for Ax = 0.05
continuous cAt = 0.025
dashed cAt = 0.0125

NB numerical diffusion * as At — 0



1.3 Upwinding — avoid downstream influence

t
n+1
up ™t — uf _ _CL’? — Uy
At Ax n X
£—17
Stability

A =1—4u(1 — p)sin® g, e stableif u <1
Longwave error analysis

U = —Cuy + %(1 — ) CAX Uyy.

ct =0.0(0.2) 1.0
Ax = 0.05, At =0.25
numerical diffusivity bounded
as At -0




1.4 Crank-Nicolson — second-order, implicit
Central difference about mid-point (¢, n+ 3)
t
n+1

n X

(-1 ¢ +1

uttt —yn cAt
¢ ¢ _ +1 +1
At - _4AX (uerl - ugfl + ug+1 — ugfl) :
Stability
11— Zipsind
14 %iusin 6

i.e. |JA| =1 all u: stable with no damping (?accurate large u?)



Crank-Nicolson

Longwave error analysis

1
U = —Cly — E(Z — ,uz)ch2 Uspex -

Uxxx Means numerical dispersion

ct =0.0(0.2) 1.0
Ax = 0.05, cAt = 0.025

5

Slower short waves at the trailing edge



1.5 Lax-Wendroff — second-order, explicit
Upwinding corrected by subtracting off leading error
(1= p)eAx [uw ~ (ufyq — 2u] + “g—l)/sz}
and rearranging

nil  n CAt c2At?

uy =y — 2Ax (”ZH - ”gfl) + A2 (U?H —2uf + U?fl)

Stability
2 _ 2 2y 41
|AI© =1—4p~(1 — p)sin” 56,
stable if u < 1 (CFL)
Longwave errors
U = —Cly — %(1 — ,uz)ch2uXXX.

again numerical dispersion



Lax-Wendroff

2N 42
1 cAt c°At
u£+ =u] — Ax (UZH - uz,l) + EIN (UZH —2uj + ué’,l)

ct =0.0(0.2)1.0
Ax = 0.05, cAt = 0.025

Slower short waves at the trailing edge



1.6 Angled derivative — second-order, explicit, 3-level

Central difference about mid-point (¢ — 1, n)

n _ ,n-1 n+1 n__ ,n
(ut)n . :1 Up—1 — Uy + g~ — Ug — —C(U )n | = Cuf uéfl‘
t-3 2 At At =3

Re-arranging

2cAt
1 -1
Ug+ = <1 — o > (Un — ng_l) + Ug_l .




Angled derivative

Stability
(Ae"‘9/2)2 — 2i(1 — 2p1)sin 30 (Aef9/2) —1=0,

stable u < 1, but spurious (stable) second mode

Longwave errors
U = —cuy + %(1 —u)(1— 2”)CAX2 Usexc -

numerical dispersion, vanishes at 1 = 3 (when exact!)



Angled derivative

0 cAt( 0

1 _ 0
Start uy = up — 5ac(uUg g — up_q)

ct =0.0(0.2) 1.0
uw=20.3




Conclusions for smooth problems

CFL stability: p = % < 1 (typically)

Odd-order schemes — numerical diffusion

i.e. spreading and decay

Even-order schemes — numerical dispersion

i.e spurious (typically trailing) oscillations



