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Multigrid

Here for 2D, Finite Differences, N x N square, N = 2™,

> Direct inversion of N x N? matrix — 3N® operations

v

Gauss-Seidel N? iterations — N* operations

v

Successive-Over-Relaxtion N iterations — N3 operations

v

Multigrid — N? operations.

Problem with Gauss-Seidel: slow diffusion across grid of longwave
errors, shortwave errors diffuse rapidly

Hence tackle longwave errors on a faster coarse grid

Coarsest grid Ax = % one interior point

Finest grid Ax = 5, (2™ — 1)? interior points



Multigrid - sequence of problems

Sequence of Poisson problems
Akxk = b,
for grids k = m, the finest, to kK = 1, the coarsest.

Make several V-cycles

Each cycle starts at the finest, descends one level at a time to the
coarsest and then ascends back to the finest.

For the first cycle, start iteration with x, = 0.
For subsequent cycles, start with x,, from previous V-cycle.



V-cycle, the descent

Starting with k = m
» Make a couple of Gauss-Seidel iterations of Axx, = by.
» Produces x;""***. Store for later use
» Calculate residue

resy, = bk — AkX/z:pprox.

v

Coarsen residue for forcing on the next coarser grid

1 21

bi_1 = Cires, where Ck:% 2 4 2
1 21

» Store by_1 for later use

» Zero x,_1 for starting iterations

> To courser grid: kK - k—1

If k > 1 go to the top of this list

End descent on coursest grid (k = 1) with just one internal point,
so Ai1x; = by is one equation in one unknown, solved exactly.

v



V-cycle, the ascent

Starting with k = 2.
» Courser solution x,_1 interpolated to finer grid

1 21
X,forremon = lxx_1 where [ = % 2 4 2
1 21
» Add this to stored x;""*** from descent
better approx __ _approx correction
X = X, + X
» Make a couple of Gauss-Seidel iterations of Ayx, = by

starting from x}fetter APPYOX ising stored by

» To finer grid: k - k+1
> If k < m go to top of this list
End ascent with x.,

Multigrid not: first solve coursest Poisson, then interpolate for
starting finer. Coarsening residue gives different forcing



Multigrid — costs

Solve on 256 x 256 grid

V2 = 272 sin(mx) sin(my)

Residue vs
#V-cycles x #GS iterations

From top, GS iterations = 1,3,2

Error reduces by 10 with 2 GS iterations at each level per V-cycle

8N? cost per V-cycle
Hence for 10™# accuracy, cost is 32N? cf 2N3 by SOR



Fast Fourier Transforms

See spectral methods for details of making fast transform
Poisson problem trivial in Fourier space. Cost in transforms.
For Nx N problem in 2D, there are N? Fourier amplitudes.
» Simple calculation of amplitudes cost N*.
» Orszag speedup gives N3.

» Fast Fourier Transform reduces to N2 In N

For 3D channel flow, FT in 2 periodic directions, FD in 3rd

Invert FD tridiagonal — cost N3 In N



Domain decompostion

Good for complex geometry, very large problems — reduces memory

requirements, FE and FD, parallelisable

v

Divide domain into many sub-domains

» For each sub-domain, identify internal points which only

involve internal variables x and boundary variables y.

v

Solve internal variables x in terms of boundary variables y

v

Solve reduced ‘Schur complement’ for boundary variables y.



Domain decomposition

For Poisson problem Ax = b, and K subdomains,
internal variables xi, x, ..., xx boundary variables y

Internal problems
Arxk + Bry = by.

Boundary problem

Cix1+Gxo+...+ CKXK—l-Dy: bg.

i.e.
Al Bl X1 b1
A2 BQ X2 b2
AK BK XK bK

C1 C2 CK D y bo



Domain decomposition
Solution of internal problems, parallelisable, small memory each
xk = At (bx — Bry).
Hence problem for boundary variables
(D— GATIBL — - — CkAR Bk) y = bo— CLAT tby— - -— Ck A b
If using direct LU inversion

» Nx N, full domain costs N®

» K subdomains, cost N°/K3 per subdomain + N3K3/2
boundary
e.g. N =100, K = 25: full 10*2, DD parallel 10° operations

v

Nx Nx N, full domain costs N°
K subdomains, cost NQ/K3 per subdomain + NOK boundary
e.g. N =100, K = 27: full 108, DD parallel 1014 operations

v

v

v



Fast Multipole Method

For long range interations (potential flow or Stokes flow)
between N point-particles seems N2 problem

Clustering effect of far particles (Barnes-Hut) gives NIn N

Making clusters multipoles + polynomial local effects

(Greengard-Rokhlin) gives N

Here in 2D for



Trees, roots and leaves

Hierarchy of domains: divide initial square box into 4 equal
squares; divide each sub-square into 4;

continue through Ing N levels, so on average only one in smallest.
Some smallest will be empty, some contain more than one.

Tree structure: at any level, smaller box within is a ‘child’, larger
box which contains it is the ‘parent’.

Top of tree is ‘root’.

Once branch contains no particle stop subdivision,

Smallest non-empty box down a branch is a ‘leaf’.



Barnes-Hut algorithm

Upward pass from leaves to root, one level at a time
» Sum charges g to charge of parent g, = qc.
» Find center of mass of charges z, = >~ z.q/ > qc.
Downward pass for each particle, starting one below root
> If box is far, then contribution from cluster
» If box is not far and not end, go down a level

» If box is not far and end, sum contributions of individual

particles

A box which is not adjacent is far.

Cost in 2D is 27N Ing N, beats N? if N > 200
Cost in 3D is 189N Ing N, beats N2 if N > 2000



Fast Multipoles — upward pass
Far shifts of point charge at z; to multipoles about center z.

zc)

(zce — z)"
In(Z — Z,') = |n(z — ZC) + Z ﬁ
r=1
Similary shift multipole at z;

bm ZC I
(z — z, ZO (z — z)mtr’
r=

where b/ is a binomial coefficient.

Upward pass from leaves to root

» Use far shifts to move multipoles of children to centre of
parent



Fast Multipoles — downward pass

Local shift of polynomial variation centred on parent z, to centred
on child z.

m

m—r

(z—2z)" E ¢/ (z—2zc) (ze —2p)" ",
r=0

where ¢/" is a binomial coefficient.

Local expansion about centre of child at z. of multipole at z,

2 z)’
Z _ Zb Z _ Zb m+r



Fast Multipoles - downward pass

Downward pass starting at root-2
» Box inherits from parent via local shift

» Plus local expansion input from 27 newly far boxes with
parent-boxes adjacent to own parent

At lowest level
» Evaluate resulting field at each particle

» Add direct particle-particle from particle within own box and 8
adjacent boxes



Fast Multipoles

Errors from first multipole order not included my,,x, in 2D

1 Mmax+1
Error < | —=
< (22)

Need myay = 6 for 1072 accuracy (Mmax = 8 in 3D)
Costs in 2D
8N + 3(Mmax + L)N + 36(Mpax + 1)°N

So for 1073 accuracy, need N > 10* before faster than N? direct
particle-particle interactions

Costs in 3D
26N + m2._ N +189m* N

max max

So for 1073 accuracy, need N > 10° before faster than N? direct
particle-particle interactions



