Resumé of Part 1

Solve driven cavity at Re = 10

Physics, maths of PDE

 $\psi - \omega$ and u - v - p formulations: Pressure

Finite Differences

Poisson solver, SOR

Time stepping, numerical instability

Accuracy, no bugs?, results

Resumé of Part 1

```
Solve driven cavity at Re = 10
Physics, maths of PDE
\psi - \omega and u - v - p formulations: Pressure
Finite Differences
Poisson solver, SOR
Time stepping, numerical instability
Accuracy, no bugs?, results
Part II – more details on general issues
Discretisation – FD, FE, Spectral
Time-stepping – implicit, pressure
Solving large sparse linear equations
Part III – collection of special topics
```

Higher order derivatives

a. central differencing

With $O(\Delta x^2)$ errors

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$

 $f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}$

Higher order derivatives

a. central differencing

With $O(\Delta x^2)$ errors

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$
 $f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}$

and higher order derivatives

$$f_i''' = \frac{f_{i+1}'' - f_{i-1}''}{2\Delta x}$$

Higher order derivatives

a. central differencing

With $O(\Delta x^2)$ errors

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$
 $f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}$

and higher order derivatives

$$f_{i}''' = \frac{f_{i+1}'' - f_{i-1}''}{2\Delta x}$$

$$= \frac{f_{i+2}'' - 2f_{i+1} + 2f_{i-1} - f_{i-2}}{2\Delta x^{3}}$$

Higher order derivatives

a. central differencing

With $O(\Delta x^2)$ errors

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$
 $f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}$

and higher order derivatives

$$f_{i}^{"'} = \frac{f_{i+1}^{"} - f_{i-1}^{"}}{2\Delta x}$$

$$= \frac{f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2}}{2\Delta x^{3}}$$

$$f_{i}^{"''} = \frac{f_{i+1}^{"} - 2f_{i}^{"} + f_{i-1}^{"}}{\Delta x^{2}}$$

Higher order derivatives

a. central differencing

With $O(\Delta x^2)$ errors

$$f'_{i} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$

$$f''_{i} = \frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}}$$

and higher order derivatives

$$f_{i}^{""} = \frac{f_{i+1}^{"} - f_{i-1}^{"}}{2\Delta x}$$

$$= \frac{f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2}}{2\Delta x^{3}}$$

$$f_{i}^{""} = \frac{f_{i+1}^{"} - 2f_{i}^{"} + f_{i-1}^{"}}{\Delta x^{2}}$$

$$= \frac{f_{i+2} - 4f_{i+1} + 6f_{i} - 4f_{i-1} + f_{i-2}}{\Delta x^{4}}$$

even \rightarrow Pascal Δ , odd \rightarrow 2× Pascal with shift

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' + \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f'_i + \frac{1}{2} \Delta x^2 f''_i + \frac{1}{6} \Delta x^3 f'''_i + \frac{1}{24} \Delta x^4 f''''_i + \dots$

Then

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{1}{3}\Delta x^3 f_i''' + O(\Delta x^5).$$

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f'_i + \frac{1}{2} \Delta x^2 f''_i + \frac{1}{6} \Delta x^3 f'''_i + \frac{1}{24} \Delta x^4 f''''_i + \dots$

Then

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{1}{3}\Delta x^3 f_i''' + O(\Delta x^5).$$

But have $f_i^{\prime\prime\prime}$ to second order. Substitute for

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f'_i + \frac{1}{2} \Delta x^2 f''_i + \frac{1}{6} \Delta x^3 f'''_i + \frac{1}{24} \Delta x^4 f''''_i + \dots$

Then

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{1}{3}\Delta x^3 f_i''' + O(\Delta x^5).$$

But have $f_i^{\prime\prime\prime}$ to second order. Substitute for

$$f_i' = \frac{-\frac{1}{12}f_{i+2} + \frac{2}{3}f_{i+1} - \frac{2}{3}f_{i-1} + \frac{1}{12}f_{i-2}}{\Delta x} + O(\Delta x^4).$$

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' + \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$

Then

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{1}{3}\Delta x^3 f_i''' + O(\Delta x^5).$$

But have $f_i^{\prime\prime\prime}$ to second order. Substitute for

$$f_i' = \frac{-\frac{1}{12}f_{i+2} + \frac{2}{3}f_{i+1} - \frac{2}{3}f_{i-1} + \frac{1}{12}f_{i-2}}{\Delta x} + O(\Delta x^4).$$

Check expression with $f = 1, x, x^2, x^3, x^4 \rightarrow \text{correct } 0, 1, 0, 0, 0$

$$f_{i+1} = f(x = i\Delta x + \Delta x)$$

= $f_i + \Delta x f_i' + \frac{1}{2} \Delta x^2 f_i'' + \frac{1}{6} \Delta x^3 f_i''' + \frac{1}{24} \Delta x^4 f_i'''' + \dots$

Then

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{1}{3}\Delta x^3 f_i''' + O(\Delta x^5).$$

But have $f_i^{\prime\prime\prime}$ to second order. Substitute for

$$f_i' = \frac{-\frac{1}{12}f_{i+2} + \frac{2}{3}f_{i+1} - \frac{2}{3}f_{i-1} + \frac{1}{12}f_{i-2}}{\Delta x} + O(\Delta x^4).$$

Check expression with $f=1,x,x^2,x^3,x^4 \to \text{correct } 0,1,0,0,0$ Similarly,

$$f_i'' = \frac{-\frac{1}{12}f_{i+2} + \frac{4}{3}f_{i+1} - \frac{5}{2}f_i + \frac{4}{3}f_{i-1} - \frac{1}{12}f_{i-2}}{\Delta x^2} + O(\Delta x^4).$$

b. One-side differencing - used in BC

With $O(\Delta x)$ error

$$f'_{0} = \frac{f_{1} - f_{0}}{\Delta x} + O(\Delta x),$$

$$f''_{0} = \frac{f_{2} - 2f_{1} + f_{0}}{\Delta x^{2}} + O(\Delta x),$$

$$f'''_{0} = \frac{f_{3} - 3f_{2} + 3f_{1} - f_{0}}{\Delta x^{3}} + O(\Delta x)$$

b. One-side differencing - used in BC

With $O(\Delta x)$ error

$$f_0' = \frac{f_1 - f_0}{\Delta x} + O(\Delta x),$$

$$f_0'' = \frac{f_2 - 2f_1 + f_0}{\Delta x^2} + O(\Delta x),$$

$$f_0''' = \frac{f_3 - 3f_2 + 3f_1 - f_0}{\Delta x^3} + O(\Delta x)$$

Error analysis by Taylor series

$$f_1 = f_0 + \Delta x f_0' + \frac{1}{2} \Delta x^2 f_0'' + O(\Delta x^3).$$

b. One-side differencing - used in BC

With $O(\Delta x)$ error

$$f_0' = \frac{f_1 - f_0}{\Delta x} + O(\Delta x),$$

$$f_0'' = \frac{f_2 - 2f_1 + f_0}{\Delta x^2} + O(\Delta x),$$

$$f_0''' = \frac{f_3 - 3f_2 + 3f_1 - f_0}{\Delta x^3} + O(\Delta x)$$

Error analysis by Taylor series

$$f_1 = f_0 + \Delta x f_0' + \frac{1}{2} \Delta x^2 f_0'' + O(\Delta x^3).$$

Using the first-order expression above for f_0''

$$f_0' = \frac{-\frac{1}{2}f_2 + 2f_1 - \frac{3}{2}f_0}{\Delta x} + O(\Delta x^2).$$

b. One-side differencing – used in BC

With $O(\Delta x)$ error

$$f'_{0} = \frac{f_{1} - f_{0}}{\Delta x} + O(\Delta x),$$

$$f''_{0} = \frac{f_{2} - 2f_{1} + f_{0}}{\Delta x^{2}} + O(\Delta x),$$

$$f'''_{0} = \frac{f_{3} - 3f_{2} + 3f_{1} - f_{0}}{\Delta x^{3}} + O(\Delta x)$$

Error analysis by Taylor series

$$f_1 = f_0 + \Delta x f_0' + \frac{1}{2} \Delta x^2 f_0'' + O(\Delta x^3).$$

Using the first-order expression above for $f_0^{\prime\prime}$

$$f_0' = \frac{-\frac{1}{2}f_2 + 2f_1 - \frac{3}{2}f_0}{\Delta x} + O(\Delta x^2).$$

Similarly

arly
$$f_0'' = rac{-f_3 + 4f_2 - 5f_1 + 2f_0}{\Delta x^2} + \mathcal{O}(\Delta x^2).$$

To find kth derivative $f^{(k)}(x_0)$ to $O(\Delta x^l)$ fit polynomial of degree k+l through k+l+1 points $x_0+\Delta x_i$,

$$f(x_0 + \Delta x_i) = a_0 + a_1 \Delta x_i + a_2 \Delta x_i^2 + \dots + a_{k+1} \Delta x_i^{k+1}.$$

To find kth derivative $f^{(k)}(x_0)$ to $O(\Delta x^I)$ fit polynomial of degree k+I through k+I+1 points $x_0+\Delta x_i$,

$$f(x_0 + \Delta x_i) = a_0 + a_1 \Delta x_i + a_2 \Delta x_i^2 + \dots a_{k+1} \Delta x_i^{k+1}.$$

Solve for polynomial coefficients a_j , e.g. by Maple , then

$$f^{(k)}(x_0) = k! a_k$$

To find kth derivative $f^{(k)}(x_0)$ to $O(\Delta x^l)$ fit polynomial of degree k+l through k+l+1 points $x_0+\Delta x_i$,

$$f(x_0 + \Delta x_i) = a_0 + a_1 \Delta x_i + a_2 \Delta x_i^2 + \dots + a_{k+1} \Delta x_i^{k+1}.$$

Solve for polynomial coefficients a_j , e.g. by MAPLE, then

$$f^{(k)}(x_0) = k! a_k$$

Central differencing on equispaced points \rightarrow one degree accuracy better

To find kth derivative $f^{(k)}(x_0)$ to $O(\Delta x^l)$ fit polynomial of degree k+l through k+l+1 points $x_0+\Delta x_i$,

$$f(x_0 + \Delta x_i) = a_0 + a_1 \Delta x_i + a_2 \Delta x_i^2 + \dots + a_{k+1} \Delta x_i^{k+1}.$$

Solve for polynomial coefficients a_j , e.g. by Maple , then

$$f^{(k)}(x_0) = k! a_k$$

Central differencing on equispaced points \rightarrow one degree accuracy better

Splines better than higher order polynomials \rightarrow FEM

a. one-dimensional version

Fourth-order differencing for $\phi_i'' = \rho$

$$-\frac{1}{12}\phi_{i+2} + \frac{4}{3}\phi_{i+1} - \frac{5}{2}\phi_i + \frac{4}{3}\phi_{i-1} - \frac{1}{12}\phi_{i-2} = \Delta x^2 \rho_i.$$

Problems: wide molecule, need special form near boundary

a. one-dimensional version

Fourth-order differencing for $\phi_i'' = \rho$

$$-\frac{1}{12}\phi_{i+2} + \frac{4}{3}\phi_{i+1} - \frac{5}{2}\phi_i + \frac{4}{3}\phi_{i-1} - \frac{1}{12}\phi_{i-2} = \Delta x^2 \rho_i.$$

Problems: wide molecule, need special form near boundary

Error in 2nd order version

$$\frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2} = \phi_i'' + \frac{1}{6}\Delta x^2 \phi_i'''' + O(\Delta x^4).$$

a. one-dimensional version

Fourth-order differencing for $\phi_i'' = \rho$

$$-\frac{1}{12}\phi_{i+2} + \frac{4}{3}\phi_{i+1} - \frac{5}{2}\phi_i + \frac{4}{3}\phi_{i-1} - \frac{1}{12}\phi_{i-2} = \Delta x^2 \rho_i.$$

Problems: wide molecule, need special form near boundary

Error in 2nd order version

$$\frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2} = \phi_i'' + \frac{1}{6}\Delta x^2 \phi_i'''' + O(\Delta x^4).$$

Now $\phi_i'' = \rho_i$ and so

$$\phi_i'''' = \rho_i'' = \frac{\rho_{i+1} - 2\rho_i + \rho_{i+1}}{\Delta x^2} + O(\Delta x^2).$$

a. one-dimensional version

Fourth-order differencing for $\phi_i'' = \rho$

$$-\frac{1}{12}\phi_{i+2} + \frac{4}{3}\phi_{i+1} - \frac{5}{2}\phi_i + \frac{4}{3}\phi_{i-1} - \frac{1}{12}\phi_{i-2} = \Delta x^2 \rho_i.$$

Problems: wide molecule, need special form near boundary

Error in 2nd order version

$$\frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2} = \phi_i'' + \frac{1}{6}\Delta x^2 \phi_i'''' + O(\Delta x^4).$$

Now $\phi_i'' = \rho_i$ and so

$$\phi_i'''' = \rho_i'' = \frac{\rho_{i+1} - 2\rho_i + \rho_{i+1}}{\Delta x^2} + O(\Delta x^2).$$

Hence

$$\frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2} = \frac{1}{6}\rho_{i+1} + \frac{2}{3}\rho_i + \frac{1}{6}\rho_{i-1} + O(\Delta x^4).$$

Use

$$\nabla^2 \rho = \nabla^2 \nabla^2 \phi = \frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4}.$$

Use

$$\nabla^2 \rho = \nabla^2 \nabla^2 \phi = \frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4}.$$

Now

$$\begin{pmatrix} 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \phi = \Delta x^2 \nabla^2 \phi + \frac{1}{12} \Delta x^4 \left(\frac{\partial^4 \phi}{\partial x^4} + \frac{\partial^4 \phi}{\partial y^4} \right).$$

Use

$$\nabla^2 \rho = \nabla^2 \nabla^2 \phi = \frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4}.$$

Now

$$\begin{pmatrix} 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \phi = \Delta x^2 \nabla^2 \phi + \frac{1}{12} \Delta x^4 \left(\frac{\partial^4 \phi}{\partial x^4} + \frac{\partial^4 \phi}{\partial y^4} \right).$$

and

$$\begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix} \phi = 2\Delta x^2 \nabla^2 \phi + \frac{1}{6} \Delta x^4 \left(\frac{\partial^4 \phi}{\partial x^4} + 6 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} \right).$$

Use

$$\nabla^2 \rho = \nabla^2 \nabla^2 \phi = \frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4}.$$

Now

$$\begin{pmatrix} 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{pmatrix} \phi = \Delta x^2 \nabla^2 \phi + \frac{1}{12} \Delta x^4 \left(\frac{\partial^4 \phi}{\partial x^4} + \frac{\partial^4 \phi}{\partial y^4} \right).$$

and

$$\begin{pmatrix} 1 & 1 \\ 1 & -4 \\ 1 & 1 \end{pmatrix} \phi = 2\Delta x^2 \nabla^2 \phi + \frac{1}{6} \Delta x^4 \left(\frac{\partial^4 \phi}{\partial x^4} + 6 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} \right).$$

Hence $\frac{2}{3}$ of first $+\frac{1}{6}$ of second

$$\begin{pmatrix}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{pmatrix}$$

 $\frac{1}{\Delta x^2} \begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{2}{3} & -\frac{10}{3} & \frac{2}{3} \\ \frac{1}{5} & \frac{2}{3} & \frac{1}{5} \end{pmatrix} \phi = \begin{pmatrix} 0 & \frac{1}{12} & 0 \\ \frac{1}{12} & \frac{2}{3} & \frac{1}{12} \\ 0 & \frac{1}{12} & 0 \end{pmatrix} \rho + O(\Delta x^4).$

Test

Analytic solution

$$\rho = 2\pi^2 \sin \pi x \sin \pi y$$
 and $\phi = -\sin \pi x \sin \pi y$.

with N = 10, 14, 20, 40 and 56

Test

Analytic solution

$$\rho = 2\pi^2 \sin \pi x \sin \pi y$$
 and $\phi = -\sin \pi x \sin \pi y$.

with N = 10, 14, 20, 40 and 56

Error decreasing as $0.27\Delta x^4$, i.e N=20 gives 210^{-6} cf 210^{-3} for 2nd order.

Crandall 4th order for diffusion equation

Similar trick, with cancellation of $\Delta t^2 \frac{\partial^2 u}{\partial t^2}$ with $\frac{1}{6} \Delta x^4 \frac{\partial^4 u}{\partial x^4}$ errors.

Crandall 4th order for diffusion equation

Similar trick, with cancellation of $\Delta t^2 \frac{\partial^2 u}{\partial t^2}$ with $\frac{1}{6} \Delta x^4 \frac{\partial^4 u}{\partial x^4}$ errors.

$$u_i^{n+1} + \left(\frac{1}{12} - \frac{\Delta t}{2\Delta x^2}\right) \left(u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}\right)$$

$$= u_i^n + \left(\frac{1}{12} + \frac{\Delta t}{2\Delta x^2}\right) \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n\right).$$

Advection $\mathbf{u}\cdot\nabla\phi$ propagates information in direction $\mathbf{u}.$

Advection $\mathbf{u}\cdot\nabla\phi$ propagates information in direction $\mathbf{u}.$ Violated by central differencing

$$u_i \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}$$

where if $u_i > 0$ downstream ϕ_{i+1} influences ϕ_i .

Advection $\mathbf{u}\cdot\nabla\phi$ propagates information in direction \mathbf{u} . Violated by central differencing

$$u_i \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}$$

where if $u_i > 0$ downstream ϕ_{i+1} influences ϕ_i .

Correct flow of info by upwinding

$$u\frac{\partial \phi}{\partial x} = \begin{cases} u_i \frac{\phi_i - \phi_{i-1}}{\Delta x} & \text{if } u_i > 0 \\ u_i \frac{\phi_{i+1} - \phi_i}{\Delta x} & \text{if } u_i < 0, \end{cases}$$

Advection $\mathbf{u}\cdot\nabla\phi$ propagates information in direction \mathbf{u} . Violated by central differencing

$$u_i \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}$$

where if $u_i > 0$ downstream ϕ_{i+1} influences ϕ_i .

Correct flow of info by upwinding

$$u\frac{\partial \phi}{\partial x} = \begin{cases} u_i \frac{\phi_i - \phi_{i-1}}{\Delta x} & \text{if } u_i > 0 \\ u_i \frac{\phi_{i+1} - \phi_i}{\Delta x} & \text{if } u_i < 0, \end{cases}$$

But only 1st order accurate, $O(\Delta x)$ errors.

Higher order

One-sided differencing at $O(\Delta x^2)$

$$u\frac{\partial \phi}{\partial x} = \begin{cases} u_i \frac{\frac{3}{2}\phi_i - 2\phi_{i-1} + \frac{1}{2}\phi_{i-2}}{\Delta x} & \text{if } u_i > 0 \\ u_i \frac{-\frac{1}{2}\phi_{i+2} + 2\phi_{i+1} - \frac{3}{2}\phi_i}{\Delta x} & \text{if } u_i < 0, \end{cases}$$

But wide molecule.

Higher order

One-sided differencing at $O(\Delta x^2)$

$$u\frac{\partial \phi}{\partial x} = \begin{cases} u_i \frac{\frac{3}{2}\phi_i - 2\phi_{i-1} + \frac{1}{2}\phi_{i-2}}{\Delta x} & \text{if } u_i > 0\\ u_i \frac{-\frac{1}{2}\phi_{i+2} + 2\phi_{i+1} - \frac{3}{2}\phi_i}{\Delta x} & \text{if } u_i < 0, \end{cases}$$

But wide molecule.

More compact and nearly upwinding

$$\frac{u}{\Delta x} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -\frac{1}{2} & 1 & \frac{1}{2} \end{pmatrix} \phi + \frac{v}{\Delta x} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 1 & 1 & 0 \\ -\frac{1}{2} & -1 & 0 \end{pmatrix} \phi.$$

$$u > 0$$
 and $v > 0$

Geometry of problem \rightarrow polars, other OG coods,

Geometry of problem \rightarrow polars, other OG coods, non–OG bad idea

Geometry of problem \rightarrow polars, other OG coods, non–OG bad idea

Increased resolution of important small regions

stretched grid
$$x(\xi)$$
 and/or $y(\eta)$

Geometry of problem \rightarrow polars, other OG coods, non–OG bad idea

Increased resolution of important small regions

stretched grid
$$x(\xi)$$
 and/or $y(\eta)$

NB OG. Central differencing on ξ and η better than non-equispaced

Geometry of problem \rightarrow polars, other OG coods, non–OG bad idea

Increased resolution of important small regions

stretched grid
$$x(\xi)$$
 and/or $y(\eta)$

NB OG. Central differencing on ξ and η better than non-equispaced Can give unnecessary coverage, e.g. away from important corner.

Geometry of problem \rightarrow polars, other OG coods, non–OG bad idea

Increased resolution of important small regions

stretched grid
$$x(\xi)$$
 and/or $y(\eta)$

NB OG. Central differencing on ξ and η better than non-equispaced

Can give unnecessary coverage, e.g. away from important corner.

Difficult to match different resolutions

Time-step stability controlled by smallest grid block

Time-step stability controlled by smallest grid block Diffusive numerical stability

$$\Delta t < \frac{1}{4} Re \, \Delta x_{\min}^2,$$

Advection stability

$$\Delta t < (\Delta x/U)_{\min}$$
.

Time-step stability controlled by smallest grid block Diffusive numerical stability

$$\Delta t < \frac{1}{4} Re \, \Delta x_{\min}^2,$$

Advection stability

$$\Delta t < (\Delta x/U)_{\min}$$
.

Restriction acute for polars

$$\Delta x_{\min} = r_{\min} \Delta \theta_{\min}$$
 with $r_{min} = \Delta r$

Time-step stability controlled by smallest grid block Diffusive numerical stability

$$\Delta t < \frac{1}{4} Re \, \Delta x_{\min}^2,$$

Advection stability

$$\Delta t < (\Delta x/U)_{\min}$$
.

Restriction acute for polars

$$\Delta x_{\min} = r_{\min} \Delta \theta_{\min}$$
 with $r_{min} = \Delta r$

In infinite domains, bring infinity nearer with stretch such as

$$x = e^{\xi}$$
 or $x = \frac{\xi}{1 - \xi}$.

Conservative forms

Two ideas

- conservative formulation of governing equation
- apply to a Finite Volume of Fluids (VoF)

Conservative forms

Two ideas

- conservative formulation of governing equation
- apply to a Finite Volume of Fluids (VoF)

Recast Navier-Stokes to

$$\frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \mathbf{\nabla} \cdot \mathbf{T} = 0$$

with total momentum flux

$$\mathbf{T} = \rho \mathbf{u} \mathbf{u} + p \mathbf{I} - 2\mu \mathbf{E}$$

Reynolds stresses, isotropic pressure and viscous stresses

apply to Volume of Fluid on staggered grid

$$\rho u_{ij+\frac{1}{2}}^{n+1} = \rho u_{ij+\frac{1}{2}}^{n} - \Delta t \left(\frac{T_{i+\frac{1}{2}j+\frac{1}{2}}^{xx} - T_{i-\frac{1}{2}j+\frac{1}{2}}^{xx}}{\Delta x} + \frac{T_{ij+1}^{xy} - T_{ij}^{xy}}{\Delta x} \right).$$

apply to Volume of Fluid on staggered grid

$$\begin{array}{c|c}
u & p, T^{xx}, T^{yy} \\
ij, T^{xy}
\end{array}$$

$$\rho u_{ij+\frac{1}{2}}^{n+1} = \rho u_{ij+\frac{1}{2}}^{n} - \Delta t \left(\frac{T_{i+\frac{1}{2}j+\frac{1}{2}}^{xx} - T_{i-\frac{1}{2}j+\frac{1}{2}}^{xx}}{\Delta x} + \frac{T_{ij+1}^{xy} - T_{ij}^{xy}}{\Delta x} \right).$$

When integrate over a large volume, internal momentum fluxes cancel.

apply to Volume of Fluid on staggered grid

$$\rho u_{ij+\frac{1}{2}}^{n+1} = \rho u_{ij+\frac{1}{2}}^{n} - \Delta t \left(\frac{T_{i+\frac{1}{2}j+\frac{1}{2}}^{xx} - T_{i-\frac{1}{2}j+\frac{1}{2}}^{xx}}{\Delta x} + \frac{T_{ij+1}^{xy} - T_{ij}^{xy}}{\Delta x} \right).$$

When integrate over a large volume, internal momentum fluxes cancel.

For momentum conservation on whole domain, need e.g. on x = 0

$$T_{-\frac{1}{2}j+\frac{1}{2}}^{xx} = T_{\frac{1}{2}j+\frac{1}{2}}^{xx} + T_{0,j+1}^{xy} - T_{0j}^{xy},$$

fluxes on staggered grid

Some averaging for inertia terms, but not for pressure and viscous terms

$$\begin{split} T^{\text{xx}}_{i+\frac{1}{2}j+\frac{1}{2}} &= \rho \left(\frac{u_{i+1j+\frac{1}{2}} + u_{ij+\frac{1}{2}}}{2} \right)^2 + p_{i+\frac{1}{2}j+\frac{1}{2}} - 2\mu \frac{u_{i+1j+\frac{1}{2}} - u_{ij+\frac{1}{2}}}{\Delta x} \\ T^{\text{xy}}_{ij} &= \rho \left(\frac{u_{ij+\frac{1}{2}} + u_{ij-\frac{1}{2}}}{2} \right) \left(\frac{v_{i+\frac{1}{2}j} + v_{i-\frac{1}{2}j}}{2} \right) \\ &- 2\mu \left(\frac{u_{ij+\frac{1}{2}} - u_{ij-\frac{1}{2}}}{\Delta x} + \frac{v_{i+\frac{1}{2}j} - v_{i-\frac{1}{2}j}}{\Delta x} \right) \\ T^{\text{yy}}_{i+\frac{1}{2}j+\frac{1}{2}} &= \rho \left(\frac{v_{i+\frac{1}{2}j+1} + v_{i+\frac{1}{2}j}}{2} \right)^2 + p_{i+\frac{1}{2}j+\frac{1}{2}} - 2\mu \frac{v_{i+\frac{1}{2}j+1} - v_{i+\frac{1}{2}j}}{\Delta x} . \end{split}$$

Use conservative form in non-Cartesian coods

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

better numerically than theoretically equivalent

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

Use conservative form in non-Cartesian coods

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

better numerically than theoretically equivalent

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

Discretisation

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) \approx \frac{\left(r^2 \frac{\partial \phi}{\partial r} \right)_{i + \frac{1}{2}} - \left(r^2 \frac{\partial \phi}{\partial r} \right)_{i - \frac{1}{2}}}{r_i^2 \Delta r}$$

with

$$\left(r^2 \frac{\partial \phi}{\partial r}\right)_{i+\frac{1}{2}} \approx r_{i+\frac{1}{2}}^2 \frac{\phi_{i+1} - \phi_i}{\Delta r}.$$

Two-phase flows

Volume-of-Fluid or One-Fluid Method = conservative scheme with $\rho(x)$ and $\mu(x)$

Alternative forms of nonlinear term

$$\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \cdot \mathbf{u} \, \mathbf{u}$$
 conserves momentum
$$= \nabla \frac{1}{2} u^2 - \mathbf{u} \wedge \omega$$
 rotational form
$$= \frac{1}{2} \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{2} \nabla \cdot \mathbf{u} \, \mathbf{u}$$
 conserves energy.

Last called "skew-symmetric" form.

Alternative forms of nonlinear term

$$\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \cdot \mathbf{u} \, \mathbf{u}$$
 conserves momentum
$$= \nabla \frac{1}{2} u^2 - \mathbf{u} \wedge \boldsymbol{\omega}$$
 rotational form
$$= \frac{1}{2} \mathbf{u} \cdot \nabla \mathbf{u} + \frac{1}{2} \nabla \cdot \mathbf{u} \, \mathbf{u}$$
 conserves energy.

Last called "skew-symmetric" form. Scalar product with ${\bf u}$

$$\left(u_iu_j(u_i^{j+1}-u_i^{j-1})+u_i(u_j^{j+1}u_i^{j+1}-u_j^{j-1}u_i^{j-1})\right)/2\Delta x,$$

subscripts for components and superscripts for location. On summing across domain, cancellations first-fourth, second-third