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Physics, maths of PDE

1 —w and u — v — p formulations: Pressure
Finite Differences

Poisson solver, SOR

Time stepping, numerical instability

Accuracy, no bugs?, results

Part Il — more details on general issues
Discretisation — FD, FE, Spectral
Time-stepping — implicit, pressure
Solving large sparse linear equations

Part Il — collection of special topics



Finite Differences

Higher order derivatives

a. central differencing
With O(Ax?) errors

[ fix1—fiza
! 2Ax
f." — fi+1 - 2fi + fi—l

! Ax?



Finite Differences

Higher order derivatives

a. central differencing
With O(Ax?) errors

1 fi+1 —fi1
P 2Ax
f." — fi+1 - 2fi + ﬁ'—l
! Ax?
and higher order derivatives
"N
fi/// — i+1 i—1

2Ax



Finite Differences

Higher order derivatives

a. central differencing
With O(Ax?) errors

1 fi+1 —fi1
P 2Ax
f." — fi+1 - 2fi + ﬁ'—l
! Ax?
and higher order derivatives
"N
f/// — i+1 i—1
! 2Ax

fivo —2fi1 +2fi1 —fio

2AX3



Finite Differences

Higher order derivatives

a. central differencing
With O(Ax?) errors

) fi+1 —fi1
o 2Ax
f." — fi+1 - 2fi + ﬁ'—l
! Ax?
and higher order derivatives
"N
f/// — i+1 i—1
! 2Ax
firo —2fip1 + 21 — fio

2AX3
20+ 12
Ax?

"
f,. =




Finite Differences

Higher order derivatives

a. central differencing
With O(Ax?) errors

f"/ ﬁ+1 - f,',]_
! 2Ax
f." — fi+1 - 2fi + fi—l
! Ax?
and higher order derivatives
"N
f/// — i+1 i—1
! 2Ax

fivo —2fi1 +2fi1 —fio

"
f,. =

2AX3

fiia =26+ £,

fizo — Afip1 + 66 —4fi 1+ fi2

Ax?

even — Pascal A, odd — 2x Pascal with shift

Ax4
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b. One-side differencing — used in BC

With O(Ax) error

f—fo
fi = A
0 Ax +O( X)7
Hh—2h +fo
fa/ - T + O(AX),
s —3h+3H — 1o
f' = 3 + O(Ax)

Error analysis by Taylor series
A = fy + Axfy + LA + O(AXP).
Using the first-order expression above for fy’

—36+2f - 3f
Ax

fo = + O(Ax?).

Similarly
n  —f3+4f —5f + 2fy

2
fo = A + O(Ax?).
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c. Non-equispaced points

To find kth derivative f(K)(xg) to O(Ax")
fit polynomial of degree k + / through k 4+ / + 1 points xg + Ax;,

f(xo + Ax;) = ap + a1 Ax; + agAx,-2 + ... ak+/Ax,.k+l.
Solve for polynomial coefficients a;, e.g. by MAPLE, then
F) (xg) = Kklay
Central differencing on equispaced points — one degree accuracy

better

Splines better than higher order polynomials — FEM
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Compact 4th order Poisson solver

a. one-dimensional version
H H " __
Fourth-order differencing for ¢} = p
1 4 5 4 1 — A2
—15Pit2 + 30i+1 — 30i + 30i-1 — 130i—2 = Ax“p;.
Problems: wide molecule, need special form near boundary

Error in 2nd order version

Giv1 — 20 + ¢i—1
Ax?

Now ¢/ = p; and so

— + %szgﬁy” + O(AX4).

d)/_m _ Pi+1 — 2pi + pit1 + O(AX2).

1 1 AX2

Hence

Giv1 — 20 + ¢i—1
Ax?

= §pit1+ 5pi + gpic1 + O(AXY).
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b. two-dimensional version

Use

0o 0t o

2 2w
Vp—VV¢—aX4+28X28y2+ay4.
Now

1
84<Z> 84<Z>
_ 22
and

1 1
0% 0*o 0%
- _ 2024 4 Iaxt (29 g
(1 4 1)¢ 28X°V79 + 5 Ax <8x4 68x28y2 8y4>'

Hence % of first + % of second

1 2 1 1
. (5 3 6 0 1 0
2 10 2 _ 1 2 1 4
A2l3 3 3|9= | 3 w|eptOAX)
1 2 1 0o L o
6 3 6 12



Test

Analytic solution
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Test

Analytic solution

p=2r’sintxsinmty and ¢ = —sinmxsinTy.
with N = 10, 14, 20, 40 and 56

0.0001

8e-05

2e-05 4e-05 6e-05 8e-05 0.0001

Error decreasing as 0.27Ax*,
i.e N =20 gives 2107° cf 21073 for 2nd order.
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Crandall 4th order for diffusion equation

Similar trick, with cancellation of AtQatg’ with 1Ax4g 2 errors.

n+1 n+1 I7+1 I1+1

1 At
= u +< toAe 2) (ufyy —2uf +ufy) .
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Upwinding

Advection u - V¢ propagates information in direction u
Violated by central differencing

I
" 2Ax

where if u; > 0 downstream ¢;;1 influences ¢;.

Correct flow of info by upwinding

Qb/ d)l 1 . )
aqb u; A if uy >0
a 1 I .

x (;5 +1AX Oi if up <0,

But only 1st order accurate, O(Ax) errors.
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Higher order

One-sided differencing at O(Ax?)

301 —20i1+ 3bi 2

uaﬁ B u; Ax if uy >0
ox _ L. Vi1 — 3
u; 2¢1+2 ‘|’A¢/+1 2¢/ if u; < 0,
X

But wide molecule.

More compact and nearly upwinding

0 00 000
u v
— -1 10]¢+—|1 1 0]¢
Ax 1 1 Ax 1

u>0and v >0
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Other grids

Geometry of problem — polars, other OG coods, non—OG bad idea
Increased resolution of important small regions
stretched grid x(§) and/or y(n)

NB OG. Central differencing on £ and 7 better than
non-equispaced
Can give unnecessary coverage, e.g. away from important corner.

(e

Difficult to match
different resolutions
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but stability

Time-step stability controlled by smallest grid block
Diffusive numerical stability

At < TRe Ax3

min>
Advection stability
At < (Ax/U) i -

Restriction acute for polars

AXmin = fminAOmin -~ With — rmpin = Ar

In infinite domains, bring infinity nearer with stretch such as

£

X:eé or X = _——.

1-¢
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Conservative forms

Two ideas
» conservative formulation of governing equation

» apply to a Finite Volume of Fluids (VoF)

Recast Navier-Stokes to

1o}

— V-T=0
5 (pu) +

with total momentum flux

T = puu + pl — 21E

Reynolds stresses, isotropic pressure and viscous stresses
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apply to Volume of Fluid on staggered grid

; u p, T TW

P2
ij, T
Txx Txx T T
pun+1 :pu At 1+2J+2 I**J+2 + ij+1 ij
ij+3 ij+3 Ax Ax '

When integrate over a large volume, internal momentum fluxes
cancel.

For momentum conservation on whole domain, need e.g. on x =0

XX _ Xy Xy
_%j"'% - T2J+2 TO’J+1 TOJ’



fluxes on staggered grid

Some averaging for inertia terms, but not for pressure and viscous

terms

XX
Ti+%j+%

xy
T

yy
Ti+l +35
2412

Uiprjpd T Uijpd N 5, ittits T Vi)
S1,1 —
2 pl+§j+§ H Ax

Uil T UL\ (Vigdj T Viel
P 2 2

Y Upjpl — Ui 1 N Vigl; — Vil
Ax Ax
2
Vigljr T Vgl
P 2

Vitljrr =~ Vil

Ax

+ P,'JrlJ'Jr% —2u

2



Use conservative form in non-Cartesian coods
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Use conservative form in non-Cartesian coods

r2or\' or) ' r2oe?

better numerically than theoretically equivalent

2
Voo L0 (206, 128

¢ 200 10%
or?  ror  r206?

209 209
(r ar>i+1 - (r 6r>,~_1

Discretisation

19 ﬁ% ~ 2
r2 Or or )~ r2Ar

1

<r23¢) ~ P2 ¢i+1—¢;.
i+1

with

1
+3  Ar



Two-phase flows

Volume-of-Fluid or One-Fluid Method
= conservative scheme with p(x) and p(x)



Alternative forms of nonlinear term

uVu = V-uu conserves momentum
= V%u2 —uAw rotational form
_ 1 1
= su-Vu+35V.uu conserves energy.

Last called “skew-symmetric’ form.



Alternative forms of nonlinear term

uVu = V-uu conserves momentum
= V%u2 —uAw rotational form
_ 1 1
= su-Vu+35V.uu conserves energy.

Last called “skew-symmetric’ form.
Scalar product with u

(ul_uj(u{:Jrl _ u{fl) i u;(#“u{fﬂ _ uj/}luf;fl)) J2Ax,
subscripts for components and superscripts for location.

On summing across domain, cancellations first—fourth,
second-third



