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f=> fipi(x)

e.g. ¢; linear over A (localised)

1. Representation

2. Variational Statement

V2f =p

51 =0, /:/;|w2+pf

SO
Kijfy = ri

with

KUZ/V¢i'V¢j fiZ/P¢;

This time — Finite Elements, part 2
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further manipulations

hi = l>sinf3 and hy = £1sin0s.

and
A= L0105 5in 05
Hence A
COos U3 1
Kip = — = —= .
12 hiho 5 cot 03
£1 = hy cot O3 + hy cotbs.
Hence A
Ki1 = ? = % (COt 03 + C0t02) .
1
Note
Ki1 + Kio + K13 = 0.
Because

Vo1 - V(b1 +¢o+¢3=1)=0.
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Assembling contributions from different triangles

Special grid:

For the 123-triangle, 0> = 5 so K13 =10
03 = 7 so Kip = —%, and so contribution to Kii is %

N|—=

For the 172-triangle, K17 = Kip = —%cot% = —z,
and so contribution to Kj1 is 1

Assembling from all triangles

Kii =4, K= Kiy=Kis=Kiz=-1, Ki3=Ki=0.



Forcing
1
ri = /Péf)i = gApi

by linear variation of ¢; on each of the 6 triangle (so A = 3h?).



Forcing
1
ri = /Péf)i = gApi

by linear variation of ¢; on each of the 6 triangle (so A = 3h?).

Hence FE Poisson problem on special grid is

0 -1 0
—1 4 —1|f+h%p =0,
0 -1 0



Forcing
1
ri = /Péf)i = gApi

by linear variation of ¢; on each of the 6 triangle (so A = 3h?).

Hence FE Poisson problem on special grid is

0 -1 0
—1 4 —1|f+h%p =0,
0 -1 0

identical to FD!
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Programming challenge

On more general unstructured grids need
» List of points: P at (xp, yp)
» List of triangles: T as vertices P, Qt, Rt
> Inverse list of triangles containing given vertex
»  or list of neighbouring points
»  or list of edges E joining points Pg, Qf

» Search to find triangle containing given point (x, y)

Can use list of triangles to assemble sparse matrix Kj;.
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Galerkin formulation or “Weak” formulation

Not all physics is 0(Action) = 0.
Consider nonlinear pde for u(x, t)

Alu)=f

Use Finite Element representation

N

u(x, t) = ui(t)¢i(x)

For vector space of basis functions, define inner product
(a,b) = / 2(x)b(x)dV

Require residual to be OG all N basis functions

(A(u) = f,¢;) =0 allj
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Automatic conservative property

(A(u) —f,¢;) =0 allj

Now (with possible selection)

Yot

So
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Eg diffusion equation

part of Navier-Stokes

=V
Galerkin after integration by parts
<ut7¢j> = —<VU,V¢J> a”J

Substitute FE representation u = > u;(t)pi(x)

Z Ui, ¢j) = — Z ui(Véi, Voj)

MUili = —K;ju,-
with ‘Mass’  Mj; = (¢;, ¢;) and ‘Stiffness’ Kj; =

= (Voi, Voj)
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b. In 1D

Using linear elements on equal intervals h

hoi=j 2/h =]
Mj=1< ¢h i=j+1 and Kj=< —1/h i=j+1
0 otherwise 0 otherwise
Hence
1

h (%ili—1 + %L'Ii + %ili+1) = (ui—1 —2uj + Ujy1) .
Remark Linear algebra to find &; — tridiagonal matrix fast to invert
Remark Time step this “semi-discretised” form with any FD (NOT
FE) algorithm, e.g.

uf“ = ul + Atu;
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c. In2D

Use linear triangular elements on special grid.
Assemble contributions to M and K from different triangles

1p2 -

she =

M;; = 112 y Kjj as before
ﬂh / ;é.ja

So

1

102 (in + 2o+ i3+ g + s + U + 7)) = Up+us+us+ur—4uy

with linear problem to find i;
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Navier-Stokes

a. Weak formulation
Use FE representation

u(x,t) = Zu,-(t)qﬁ,-(x),
p(x,t) = Zpi(f)wi(X%

Need different ¢; and ;.

Galerkin

)
<p ((;: +u- Vu> +Vp—uV2ua¢j> =0 all g,

and incompressibility constraint

(V-u,b) =0 all 1.
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Integration by parts
p (Mjju; + Qjujuy) = —Bjipj — pKjuj,

and
—B,'J'UJ' = 0,

with mass M and stiffness K as before, and two new coupling
matrices

Qijk = (¢iVj, ¢k) and  Bjj = (Vy;, ¢;) = —(¢;, V).
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b. Time integration

Time step semi-discretised form with any FD algorithm
u7+1 = U? + Atu;
Incompressible by projection split step

u* = ul+ At(a] without the p term),

n
I
™ = u* + At(47 with just the p term),
with p chosen so the incompressibility at the end of the step

Bu"tl =0.
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Problems with pressure — Locking

Consider triangles with velocity linear and pressure constant
Then
(V-u, ) =0 allj,

7{ up, =0,
A.

J

gives

i.e. no net volume flux out of triangle A;.
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... locking

Consider top corner, with u = 0 on boundary (74123).

For triangle 145,
flux in over edge 45 is %hV5, flux out over edge 15 is %h(U5 + vs)
Hence us = 0, by symmetry (triangle 125) vs = 0.

Then ug =0 and ug =0, so u=0.
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.locking

For one triangle there are 1p 4 3u + 3v variables.
But on a 4 x 3 grid

there are 24p + 6u + 6v variables. Too many p
Create more u & v with bubble functions (vanish on boundaries of
elements), or reduce number of pressure
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Spurious pressure modes

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow
Bj,'pj =0.

has eigensolutions. Avoid by choosing ¢; and ; to satisfy the
Babuska-Brezzi condition.
Alternatively, replace incompressibility by

V -u=Bh’p, with optimal 3 = 0.025

Weak formulation
Bjju; + 5h2p,' =0.
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Also upwinding

> Petrov-Galerkin: Add upstream bias to weight functions,
but adds artificial numerical streamwise diffusion

» Lagrangian Finite Elements — elements advected with flow,

but elements become distorted
— re-griding, e.g. diagonal swapping.

» ALE — somewhere between Lagrangian and Eulerian.



