1. Representation

$$f=\sum f_i\phi_i(x)$$

e.g. ϕ_i linear over \triangle (localised)

1. Representation

$$f=\sum f_i\phi_i(x)$$

e.g. ϕ_i linear over \triangle (localised)

2. Variational Statement

$$\nabla^2 f = \rho$$
 \equiv $\delta I = 0$, $I = \int \frac{1}{2} |\nabla f|^2 + \rho f$

so

$$K_{ij}f_j=r_i$$

with

$$\mathcal{K}_{ij} = \int
abla \phi_i \cdot
abla \phi_j \qquad r_i = \int
ho \phi_i$$

1. Representation

$$f=\sum f_i\phi_i(x)$$

e.g. ϕ_i linear over \triangle (localised)

2. Variational Statement

$$abla^2 f =
ho \qquad \equiv \qquad \delta I = 0, \quad I = \int \frac{1}{2} |\nabla f|^2 + \rho f$$

so

$$K_{ij}f_j=r_i$$

with

$$K_{ij} = \int \nabla \phi_i \cdot \nabla \phi_j \qquad r_i = \int \rho \phi_i$$

This time – Finite Elements, part 2

Details in 2D with linear triangular elements

Consider one triangle $|
abla\phi_1|=1/h_1$

Details in 2D with linear triangular elements

Consider one triangle $|
abla\phi_1|=1/h_1$

$$\mathcal{K}_{11} = \int
abla \phi_1 \cdot
abla \phi_1 = rac{\mathcal{A}}{\mathcal{h}_1^2}$$

Details in 2D with linear triangular elements

Consider triangle one $|\nabla \phi_1| = 1/h_1$

$$K_{11} = \int \nabla \phi_1 \cdot \nabla \phi_1 = \frac{A}{h_1^2}$$

$$\mathcal{K}_{11} = \int
abla \phi_1 \cdot
abla \phi_1 = rac{A}{h_1^2} \quad \mathcal{K}_{12} = \int
abla \phi_1 \cdot
abla \phi_2 = -rac{A\cos heta_3}{h_1h_2}$$

$$h_1=\ell_2\sin heta_3$$
 and $h_2=\ell_1\sin heta_3$.

and

$$A = \frac{1}{2}\ell_1\ell_2\sin\theta_3.$$

and

$$h_1 = \ell_2 \sin \theta_3$$
 and $h_2 = \ell_1 \sin \theta_3$.

$$A = \frac{1}{2}\ell_1\ell_2\sin\theta_3.$$

$$K_{12} = -\frac{\cos \theta_3 A}{h_1 h_2} = -\frac{1}{2} \cot \theta_3.$$

$$\ell_1 = h_1 \cot \theta_3 + h_1 \cot \theta_2.$$

and

$$A = \frac{1}{2}\ell_1\ell_2\sin\theta_3.$$

 $h_1 = \ell_2 \sin \theta_3$ and $h_2 = \ell_1 \sin \theta_3$.

Hence

$$K_{12} = -\frac{\cos \theta_3 A}{h_1 h_2} = -\frac{1}{2} \cot \theta_3.$$

$$\ell_1 = h_1 \cot \theta_3 + h_1 \cot \theta_2.$$

Hence

$$K_{11} = \frac{A}{h_1^2} = \frac{1}{2} \left(\cot \theta_3 + \cot \theta_2 \right).$$

 $h_1 = \ell_2 \sin \theta_3$ and $h_2 = \ell_1 \sin \theta_3$.

and

$$A = \frac{1}{2}\ell_1\ell_2\sin\theta_3.$$

Hence

$$K_{12} = -\frac{\cos \theta_3 A}{h_1 h_2} = -\frac{1}{2} \cot \theta_3.$$

$$\ell_1 = h_1 \cot \theta_3 + h_1 \cot \theta_2.$$

Hence

$$K_{11} = \frac{A}{h_1^2} = \frac{1}{2} \left(\cot \theta_3 + \cot \theta_2 \right).$$

Note

$$K_{11}+K_{12}+K_{13}=0. \\$$

 $h_1 = \ell_2 \sin \theta_3$ and $h_2 = \ell_1 \sin \theta_3$. and Hence $\ell_1 = h_1 \cot \theta_3 + h_1 \cot \theta_2$. Hence

$$A=rac{1}{2}\ell_1\ell_2\sin heta_3.$$
 $K_{12}=-rac{\cos heta_3A}{h_2h_2}=-rac{1}{2}\cot heta_3.$

$$K_{11} = \frac{A}{h_1^2} = \frac{1}{2} \left(\cot \theta_3 + \cot \theta_2 \right).$$

 $\nabla \phi_1 \cdot \nabla (\phi_1 + \phi_2 + \phi_3 \equiv 1) \equiv 0.$

Note

$$K_{11} + K_{12} + K_{13} = 0.$$

Because

Special grid:

For the 123-triangle,

Special grid:

For the 123-triangle, $\theta_2=\frac{\pi}{2}$ so $\mathcal{K}_{13}=0$

Special grid:

For the 123-triangle,
$$\theta_2=\frac{\pi}{2}$$
 so $K_{13}=0$ $\theta_3=\frac{\pi}{4}$ so $K_{12}=-\frac{1}{2}$,

Special grid:

For the 123-triangle,
$$\theta_2=\frac{\pi}{2}$$
 so $K_{13}=0$ $\theta_3=\frac{\pi}{4}$ so $K_{12}=-\frac{1}{2}$, and so contribution to K_{11} is $\frac{1}{2}$

Special grid:

For the 123-triangle,
$$\theta_2=\frac{\pi}{2}$$
 so $K_{13}=0$ $\theta_3=\frac{\pi}{4}$ so $K_{12}=-\frac{1}{2}$, and so contribution to K_{11} is $\frac{1}{2}$ For the 172-triangle, $K_{17}=K_{12}=-\frac{1}{2}\cot\frac{\pi}{4}=-\frac{1}{2}$, and so contribution to K_{11} is 1

Special grid:

For the 123-triangle,
$$\theta_2=\frac{\pi}{2}$$
 so $K_{13}=0$ $\theta_3=\frac{\pi}{4}$ so $K_{12}=-\frac{1}{2}$, and so contribution to K_{11} is $\frac{1}{2}$ For the 172-triangle, $K_{17}=K_{12}=-\frac{1}{2}\cot\frac{\pi}{4}=-\frac{1}{2}$, and so contribution to K_{11} is 1

Assembling from all triangles

$$K_{11} = 4$$
, $K_{12} = K_{14} = K_{15} = K_{17} = -1$, $K_{13} = K_{16} = 0$.

Forcing

$$r_i = \int \rho \phi_i = \frac{1}{3} A \rho_i$$

by linear variation of ϕ_i on each of the 6 triangle (so $A=3h^2$).

Forcing

$$r_i = \int
ho \phi_i = \frac{1}{3} A
ho_i$$

by linear variation of ϕ_i on each of the 6 triangle (so $A = 3h^2$).

Hence FE Poisson problem on special grid is

$$egin{pmatrix} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{pmatrix} f + h^2
ho_i = 0,$$

$$\left(egin{array}{ccc} 0 & -1 & 0 \ -1 & 4 & -1 \ 0 & -1 & 0 \end{array}
ight) f + h^2
ho_i = 0$$

Forcing

$$r_i = \int
ho \phi_i = \frac{1}{3} A
ho_i$$

by linear variation of ϕ_i on each of the 6 triangle (so $A=3h^2$).

Hence FE Poisson problem on special grid is

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} f + h^2 \rho_i = 0,$$

identical to FD!

On more general unstructured grids need

List of points: P at (x_P, y_P)

- List of points: P at (x_P, y_P)
- ▶ List of triangles: T as vertices P_T , Q_T , R_T

- ▶ List of points: P at (x_P, y_P)
- ▶ List of triangles: T as vertices P_T , Q_T , R_T
- ▶ Inverse list of triangles containing given vertex

- List of points: P at (x_P, y_P)
- ▶ List of triangles: T as vertices P_T , Q_T , R_T
- Inverse list of triangles containing given vertex
- or list of neighbouring points
- or list of edges E joining points P_E, Q_E

- List of points: P at (x_P, y_P)
- ▶ List of triangles: T as vertices P_T , Q_T , R_T
- Inverse list of triangles containing given vertex
- or list of neighbouring points
- or list of edges E joining points P_E, Q_E
- ▶ Search to find triangle containing given point (x, y)

On more general unstructured grids need

- ▶ List of points: P at (x_P, y_P)
- ▶ List of triangles: T as vertices P_T , Q_T , R_T
- ▶ Inverse list of triangles containing given vertex
- or list of neighbouring points
- or list of edges E joining points P_E, Q_E
- ▶ Search to find triangle containing given point (x, y)

Can use list of triangles to assemble sparse matrix K_{ij} .

Not all physics is $\delta(Action) = 0$.

Not all physics is $\delta(Action) = 0$. Consider nonlinear pde for $u(\mathbf{x}, t)$

$$A(u) = f$$

Not all physics is $\delta(Action) = 0$. Consider nonlinear pde for $u(\mathbf{x}, t)$

$$A(u) = f$$

Use Finite Element representation

$$u(\mathbf{x},t) = \sum_{i=1}^{N} u_i(t)\phi_i(\mathbf{x})$$

Not all physics is $\delta(Action) = 0$. Consider nonlinear pde for $u(\mathbf{x}, t)$

$$A(u) = f$$

Use Finite Element representation

$$u(\mathbf{x},t) = \sum_{i=1}^{N} u_i(t)\phi_i(\mathbf{x})$$

For vector space of basis functions, define inner product

$$\langle a,b\rangle = \int a(\mathbf{x})b(\mathbf{x})dV$$

Not all physics is $\delta(Action) = 0$. Consider nonlinear pde for $u(\mathbf{x}, t)$

$$A(u) = f$$

Use Finite Element representation

$$u(\mathbf{x},t) = \sum_{i=1}^{N} u_i(t)\phi_i(\mathbf{x})$$

For vector space of basis functions, define inner product

$$\langle a,b\rangle = \int a(\mathbf{x})b(\mathbf{x})dV$$

Require residual to be OG all N basis functions

$$\langle A(u) - f, \phi_i \rangle = 0$$
 all j

$$\langle A(u) - f, \phi_i \rangle = 0$$
 all j

$$\langle A(u) - f, \phi_i \rangle = 0$$
 all j

Now (with possible selection)

$$\sum \phi \equiv 1$$

$$\langle A(u) - f, \phi_i \rangle = 0$$
 all j

Now (with possible selection)

$$\sum \phi \equiv 1$$

So

$$\langle A(u) - f, 1 \rangle = 0$$

$$\langle A(u) - f, \phi_i \rangle = 0$$
 all j

Now (with possible selection)

$$\sum \phi \equiv 1$$

So

$$\langle A(u)-f,1\rangle=0$$

i.e.

$$\int A(u) = \int f$$

Eg diffusion equation

part of Navier-Stokes

$$u_t = \nabla^2 u$$

$$u_t = \nabla^2 u$$

Galerkin after integration by parts

$$\langle u_t, \phi_j \rangle = -\langle \nabla u, \nabla \phi_j \rangle$$
 all j

$$u_t = \nabla^2 u$$

Galerkin after integration by parts

$$\langle u_t, \phi_j \rangle = -\langle \nabla u, \nabla \phi_j \rangle$$
 all j

Substitute FE representation $u = \sum u_i(t)\phi_i(x)$

$$\sum \dot{u}_i \langle \phi_i, \phi_j \rangle = -\sum u_i \langle \nabla \phi_i, \nabla \phi_j \rangle$$

$$u_t = \nabla^2 u$$

Galerkin after integration by parts

$$\langle u_t, \phi_j \rangle = -\langle \nabla u, \nabla \phi_j \rangle$$
 all j

Substitute FE representation $u = \sum u_i(t)\phi_i(x)$

$$\sum \dot{u}_i \langle \phi_i, \phi_j \rangle = -\sum u_i \langle \nabla \phi_i, \nabla \phi_j \rangle$$

i.e.

$$M_{ij}\dot{u}_i = -K_{ij}u_i$$

with 'Mass' $\textit{M}_{ij} = \langle \phi_i, \phi_j \rangle$ and 'Stiffness' $\textit{K}_{ij} = \langle \nabla \phi_i, \nabla \phi_j \rangle$

b. In 1D

Using linear elements on equal intervals h

b. In 1D

Using linear elements on equal intervals h

$$M_{ij} = \left\{ egin{array}{ll} rac{2}{3}h & i=j \ rac{1}{6}h & i=j\pm 1 \ 0 & ext{otherwise} \end{array}
ight. ext{ and } K_{ij} = \left\{ egin{array}{ll} 2/h & i=j \ -1/h & i=j\pm 1 \ 0 & ext{otherwise} \end{array}
ight.$$

b. In 1D

Using linear elements on equal intervals h

$$M_{ij} = \left\{ \begin{array}{ll} \frac{2}{3}h & i=j \\ \frac{1}{6}h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad K_{ij} = \left\{ \begin{array}{ll} 2/h & i=j \\ -1/h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right.$$

Hence

$$h\left(\frac{1}{6}\dot{u}_{i-1}+\frac{2}{3}\dot{u}_i+\frac{1}{6}\dot{u}_{i+1}\right)=\frac{1}{h}\left(u_{i-1}-2u_i+u_{i+1}\right).$$

Using linear elements on equal intervals h

$$M_{ij} = \left\{ \begin{array}{ll} \frac{2}{3}h & i=j \\ \frac{1}{6}h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad K_{ij} = \left\{ \begin{array}{ll} 2/h & i=j \\ -1/h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right.$$

Hence

$$h\left(\frac{1}{6}\dot{u}_{i-1}+\frac{2}{3}\dot{u}_i+\frac{1}{6}\dot{u}_{i+1}\right)=\frac{1}{h}\left(u_{i-1}-2u_i+u_{i+1}\right).$$

Remark Linear algebra to find \dot{u}_i – tridiagonal matrix fast to invert

Using linear elements on equal intervals h

$$M_{ij} = \left\{ \begin{array}{ll} \frac{2}{3}h & i=j \\ \frac{1}{6}h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right. \quad \text{and} \quad K_{ij} = \left\{ \begin{array}{ll} 2/h & i=j \\ -1/h & i=j\pm 1 \\ 0 & \text{otherwise} \end{array} \right.$$

Hence

$$h\left(\frac{1}{6}\dot{u}_{i-1}+\frac{2}{3}\dot{u}_i+\frac{1}{6}\dot{u}_{i+1}\right)=\frac{1}{h}\left(u_{i-1}-2u_i+u_{i+1}\right).$$

Remark Linear algebra to find \dot{u}_i – tridiagonal matrix fast to invert Remark Time step this "semi-discretised" form with any FD (NOT FE) algorithm, e.g.

$$u_i^{n+1} = u_i^n + \Delta t \dot{u}_i$$

c. In 2D

Use linear triangular elements on special grid.

c. In 2D

Use linear triangular elements on special grid. Assemble contributions to M and K from different triangles

$$M_{ij} = \left\{ egin{array}{ll} rac{1}{12}h^2 & i=j \ rac{1}{24}h^2 & i
eq j, \end{array}
ight. \hspace{0.5cm} extbf{K}_{ij} \hspace{0.5cm} ext{as before}$$

c. In 2D

Use linear triangular elements on special grid.

Assemble contributions to M and K from different triangles

$$M_{ij} = \left\{ egin{array}{ll} rac{1}{12}h^2 & i=j \ rac{1}{24}h^2 & i
eq j, \end{array}
ight. \hspace{0.5cm} ext{K_{ij} as before}$$

So

$$\frac{1}{2}h^2\left(\dot{u}_1 + \frac{1}{6}(\dot{u}_2 + \dot{u}_3 + \dot{u}_4 + \dot{u}_5 + \dot{u}_6 + \dot{u}_7)\right) = u_2 + u_4 + u_5 + u_7 - 4u_1$$
 with linear problem to find \dot{u}_i

Navier-Stokes

Navier-Stokes

a. Weak formulation

Use FE representation

$$\mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{u}_{i}(t)\phi_{i}(\mathbf{x}),$$

 $p(\mathbf{x},t) = \sum_{i} p_{i}(t)\psi_{i}(\mathbf{x}),$

Need different ϕ_i and ψ_i .

Navier-Stokes

a. Weak formulation

Use FE representation

$$\mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{u}_{i}(t)\phi_{i}(\mathbf{x}),$$

$$p(\mathbf{x},t) = \sum_{i} p_{i}(t)\psi_{i}(\mathbf{x}),$$

Need different ϕ_i and ψ_i .

Galerkin

$$\left\langle \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) + \nabla \rho - \mu \nabla^2 \mathbf{u}, \phi_j \right\rangle = 0$$
 all ϕ_j ,

and incompressibility constraint

$$\langle \nabla \cdot \mathbf{u}, \psi_i \rangle = 0$$
 all ψ_i .

Integration by parts

$$\rho \left(M_{ij}\dot{\mathbf{u}}_{j} + Q_{ijk}\mathbf{u}_{j}\mathbf{u}_{k} \right) = -B_{ji}p_{j} - \mu K_{ij}\mathbf{u}_{j},$$

and

$$-B_{ij}\mathbf{u}_{j}=0,$$

with mass M and stiffness K as before, and two new coupling matrices

$$Q_{ijk} = \langle \phi_i \nabla \phi_j, \phi_k \rangle$$
 and $B_{ij} = \langle \nabla \psi_i, \phi_j \rangle = -\langle \psi_i, \nabla \phi_j \rangle$.

b. Time integration

Time step semi-discretised form with any FD algorithm

$$\mathbf{u}_{i}^{n+1}=\mathbf{u}_{i}^{n}+\Delta t\dot{\mathbf{u}}_{i}$$

b. Time integration

Time step semi-discretised form with any FD algorithm

$$\mathbf{u}_{i}^{n+1}=\mathbf{u}_{i}^{n}+\Delta t\dot{\mathbf{u}}_{i}$$

Incompressible by projection split step

$$\mathbf{u}^* = \mathbf{u}_i^n + \Delta t (\dot{\mathbf{u}}_i^n \text{ without the } p \text{ term}),$$

 $\mathbf{u}^{n+1} = \mathbf{u}^* + \Delta t (\dot{\mathbf{u}}_i^n \text{ with just the } p \text{ term}),$

b. Time integration

Time step semi-discretised form with any FD algorithm

$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n + \Delta t \dot{\mathbf{u}}_i$$

Incompressible by projection split step

$$\begin{array}{rcl} \mathbf{u}^{*} & = & \mathbf{u}_{i}^{n} + \Delta t \left(\dot{\mathbf{u}}_{i}^{n} & \text{without the } p \text{ term} \right), \\ \mathbf{u}^{n+1} & = & \mathbf{u}^{*} + \Delta t \left(\dot{\mathbf{u}}_{i}^{n} & \text{with just the } p \text{ term} \right), \end{array}$$

with p chosen so the incompressibility at the end of the step

$$B\mathbf{u}^{n+1}=0.$$

Problems with pressure – Locking

Consider triangles with velocity linear and pressure constant

Problems with pressure - Locking

Consider triangles with velocity linear and pressure constant Then

$$\langle \nabla \cdot \mathbf{u}, \psi_j \rangle = 0$$
 all j ,

gives

Problems with pressure - Locking

Consider triangles with velocity linear and pressure constant Then

$$\langle \nabla \cdot \mathbf{u}, \psi_j \rangle = 0$$
 all j ,

gives

$$\oint_{\Delta_i} u_n = 0,$$

i.e. no net volume flux out of triangle Δ_j .

Consider top corner, with $\mathbf{u}=0$ on boundary (74123).

Consider top corner, with $\mathbf{u}=0$ on boundary (74123).

For triangle 145,

Consider top corner, with $\mathbf{u} = 0$ on boundary (74123).

For triangle 145, flux in over edge 45 is $\frac{1}{2}hv_5$,

Consider top corner, with $\mathbf{u} = 0$ on boundary (74123).

For triangle 145, flux in over edge 45 is $\frac{1}{2}hv_5$, flux out over edge 15 is $\frac{1}{2}h(u_5 + v_5)$

Consider top corner, with $\mathbf{u} = 0$ on boundary (74123).

For triangle 145, flux in over edge 45 is $\frac{1}{2}hv_5$, flux out over edge 15 is $\frac{1}{2}h(u_5 + v_5)$ Hence $u_5 = 0$,

Consider top corner, with $\mathbf{u} = 0$ on boundary (74123).

For triangle 145, flux in over edge 45 is $\frac{1}{2}hv_5$, flux out over edge 15 is $\frac{1}{2}h(u_5 + v_5)$ Hence $u_5 = 0$, by symmetry (triangle 125) $v_5 = 0$.

Consider top corner, with $\mathbf{u} = 0$ on boundary (74123).

For triangle 145, flux in over edge 45 is $\frac{1}{2}hv_5$, flux out over edge 15 is $\frac{1}{2}h(u_5+v_5)$ Hence $u_5=0$, by symmetry (triangle 125) $v_5=0$.

Then $\mathbf{u}_6=0$ and $\mathbf{u}_8=0$, so $\mathbf{u}\equiv 0$.

For one triangle there are 1p + 3u + 3v variables.

For one triangle there are 1p + 3u + 3v variables. But on a 4×3 grid

there are 24p + 6u + 6v variables.

For one triangle there are 1p + 3u + 3v variables. But on a 4×3 grid

there are 24p + 6u + 6v variables. Too many p

For one triangle there are 1p + 3u + 3v variables. But on a 4×3 grid

there are 24p + 6u + 6v variables. Too many p Create more u & v with bubble functions (vanish on boundaries of elements),

For one triangle there are 1p + 3u + 3v variables. But on a 4×3 grid

there are 24p + 6u + 6v variables. Too many p Create more u & v with bubble functions (vanish on boundaries of elements), or reduce number of pressure

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow

$$B_{ji}p_j=0.$$

has eigensolutions.

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow

$$B_{ji}p_j=0.$$

has eigensolutions. Avoid by choosing ϕ_i and ψ_i to satisfy the Babuška-Brezzi condition.

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow

$$B_{ji}p_j=0.$$

has eigensolutions. Avoid by choosing ϕ_i and ψ_i to satisfy the Babuška-Brezzi condition.

Alternatively, replace incompressibility by

$$\nabla \cdot \mathbf{u} = \beta h^2 p$$
, with optimal $\beta = 0.025$

if have p linear over triangle

As in Algorithm 2 of driven cavity, above pressure drives no flow

$$B_{ii}p_i=0.$$

has eigensolutions. Avoid by choosing ϕ_i and ψ_i to satisfy the Babuška-Brezzi condition.

Alternatively, replace incompressibility by

$$\nabla \cdot \mathbf{u} = \beta h^2 p$$
, with optimal $\beta = 0.025$

Weak formulation

$$B_{ij}\mathbf{u}_i + \beta h^2 p_i = 0.$$

▶ Petrov-Galerkin: Add upstream bias to weight functions,

► Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion

- ► Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion
- ► Lagrangian Finite Elements elements advected with flow,

- Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion
- ► Lagrangian Finite Elements elements advected with flow,

but elements become distorted

- Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion
- ► Lagrangian Finite Elements elements advected with flow,

but elements become distorted \rightarrow re-griding

- Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion
- ► Lagrangian Finite Elements elements advected with flow,

but elements become distorted \rightarrow re-griding, e.g. diagonal swapping.

- ► Petrov-Galerkin: Add upstream bias to weight functions, but adds artificial numerical streamwise diffusion
- Lagrangian Finite Elements elements advected with flow,

but elements become distorted

→ re-griding, e.g. diagonal swapping.

▶ ALE – somewhere between Lagrangian and Eulerian.