Course structure

Computational Methods in Fluid Mechanics

John Hinch and Mahesh Tirumkudulu

Cambridge University and IIT Bombay

29 January – 9 February 2018

GIAN 171002M01 at IIT Bombay

with help from S.J.Cowley, P.J.Dellar & P.D.Metcalfe

Three parts:

- \triangleright Simple Navier-Stokes problem by simple method
	- accuracy, stability, pressure
- \triangleright Better treatment of general issues
	- discretisation, time-stepping, linear algebra
- \triangleright Collection of special topics
	- demo FreeFem, hyperbolic, fast multipoles, free surface

1. The driven cavity

Incompressible Navier-Stokes

ρ

$$
\nabla \cdot \mathbf{u} = 0,
$$

$$
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u},
$$

2D, $L \times L$ -box

$$
\mathbf{u} = 0 \quad \text{on } y = 0 \text{ and } 0 < x < L \text{, and on } x = 0 \text{ or } L \text{ and } 0 < y < L
$$

and
$$
\mathbf{u} = (U(x), 0)
$$
 on $y = L$ and $0 < x < L$.

To find the force on the lid

$$
F = \int_0^L \mu \left. \frac{\partial u}{\partial y} \right|_{y=L} dx
$$

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

 $\blacktriangleright \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$

info propagates at **u**, i.e. $\delta x = u \delta t$.

 $\rho \frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$

info diffuses, diffusivity $\nu = \mu/\rho$, i.e. $\delta x =$ √ νδt.

 $\rho \frac{\partial \mathbf{u}}{\partial t} = -\nabla p$ with $\nabla \cdot \mathbf{u} = 0$

info at ∞ in 0 time, i.e. speed of sound = ∞ .

- \triangleright \triangleright $Re \ll 1$ must resolve fast diffusion of vorticity,
	- \blacktriangleright Re \gg 1 must resolve thin boundary layers,
	- \blacktriangleright we study $Re = 10$.

Know your PDE

What is well-posed? Equation $+$ BCs $+$ ICs. Wrong BC: $\frac{4}{7}$ solution

- $\blacktriangleright \frac{\partial \phi}{\partial t} + u(x, t) \frac{\partial \phi}{\partial x} = f(x, t)$ first order hyperbolic Well posed with IC $\phi(x, 0)$ and inflow BC, e.g. at $x = a$ need $\phi(a, t)$ if $u(a, t) > 0$. $\frac{\partial^2 \phi}{\partial x^2}$ $\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2}$ $\frac{\partial^2 \phi}{\partial x^2}$ – second order hyperbolic Well posed with
	- IC $\phi(x, 0)$ and $\phi_t(x, 0)$ and
	- BC at both ends either ϕ or ϕ_x or mixed.
- $\triangleright \nabla^2 \phi = \rho$ Laplace/Poisson equation, elliptic Well posed with BC ϕ or $\partial \phi / \partial n$ or mixed
- $\blacktriangleright \frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2}$ $\frac{\partial^2 \phi}{\partial x^2}$ — Diffusion equation, parabolic Well posed with IC $\phi(x,0)$ and
	- BC at both ends either ϕ or ϕ_x or mixed.

Special physics – the corner

- \blacktriangleright Naming from quadratic forms
	- $ax^{2} + bxy + cy^{2} + dx + fv + g = 0$ $a\frac{\partial^2 \phi}{\partial x^2}$ $\frac{\partial^2\phi}{\partial x^2}+b\frac{\partial^2\phi}{\partial x\partial y}+c\frac{\partial^2\phi}{\partial y^2}$ $\frac{\partial^2 \phi}{\partial y^2} + d \frac{\partial \phi}{\partial x} + e \frac{\partial \phi}{\partial y} + f \phi = 0$
- \blacktriangleright Numerically
	- \blacktriangleright hyperbolic tough
	- \blacktriangleright elliptic costly
	- \blacktriangleright parabolic safest
- **Constant lid velocity** $\mathbf{u} = (U_0, 0)$ $\rightarrow \sigma \propto r^{-1} \quad \rightarrow F = \infty$
- Better $\mathbf{u} = (U_0 \sin \pi x/L, 0)$
	- $\rightarrow \sigma \propto \ln r \rightarrow F$ difficult numerically
- **F** Therefore we take $\mathbf{u} = (U_0 \sin^2 \pi x/L, 0)$

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Scale u on U_0 , x and y on L , t on L/U_0 and p on ρU_0^2 . Then

$$
Re = \frac{\text{inertial terms } \rho U_0^2 / L}{\text{viscous terms } \mu U_0 / L^2} = \frac{U_0 L}{\nu}.
$$

The non-dimensionalised problem

$$
\nabla \cdot \mathbf{u} = 0,
$$

$$
\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u},
$$

with BCs

$$
\mathbf{u} = 0 \quad \text{on } y = 0 \text{ and } 0 < x < 1 \text{, and on } x = 0 \text{ or } 1 \text{ and } 0 < y < 1
$$
\n
$$
\mathbf{u} = (\sin^2(\pi x), 0) \quad \text{on } y = 1 \text{ and } 0 < x < 1.
$$

We take ICs

$$
u(x,0) = 0 \quad \text{at } t = 0 \text{ for } 0 < x < 1 \text{ and } 0 < y < 1.
$$

We seek solution at $Re = 10$.

Finally the force, scaled by μU_0

$$
F=\int_0^1\frac{\partial u}{\partial y}\bigg|_{y=1} dx.
$$

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS – nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different $Re - c$ rude parameter continuation.

Methods for relaxing to $SS \equiv$ pseudo time-stepping.

Pressure!

Idea: time-step $u(x, t)$ from t to $t + \Delta t$ using ∂ **u**/ ∂ *t* from the momentum equation But how to find ∇p ?

Pressure $=$ "Lagrangian multiplier" associated with constraint $\nabla \cdot \mathbf{u} = 0$.

Two options:

- Find the ∇p that ensures $\nabla \cdot \mathbf{u} = 0$ – primitive variable formulation
- \blacktriangleright Eliminate p by forming the vorticity equation
	- streamfunction-vorticity formulation

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u} = 0$ by using the streamfunction representation $\psi(x, y)$

$$
u=\frac{\partial \psi}{\partial y} \quad \text{and} \quad v=-\frac{\partial \psi}{\partial x}.
$$

In 2D flow vorticity is

$$
\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = -\nabla^2 \psi.
$$

Vorticity equation

Take curl of momentum equation to eliminate p

$$
\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = 0 + \frac{1}{Re} \nabla^2 \omega
$$

No stretching in 2D (first term on RHS)

$$
\mathbf{u} \cdot \nabla \omega = \psi_y \omega_x - \psi_x \omega_y = -\frac{\partial(\psi, \omega)}{\partial(x, y)}
$$

BC1:
$$
\mathbf{u} \cdot \mathbf{n} = 0
$$
 all sides
\n \rightarrow sides = streamline $\rightarrow \psi = 0$.
\nBC2: tangential velocity
\n $\frac{\partial \psi}{\partial y} = \sin^2 \pi x$ on top $y = 1$, $0 < x < 1$
\n $\frac{\partial \psi}{\partial y} = 0$ on bottom $y = 0$, $0 < x < 1$
\n $\frac{\partial \psi}{\partial x} = 0$ on sides $x = 0$ and 1 , $0 < y < 1$

Solve as decoupled pair

1. At each t given ω , find ψ :

$$
\nabla^2 \psi = -\omega
$$

with $\psi = 0$ all sides.

2. With ω and now ψ known at t, find ω at $t + \Delta t$:

$$
\frac{\partial \omega}{\partial t} = -\frac{\partial (\psi, \omega)}{\partial (x, y)} + \frac{1}{Re} \nabla^2 \omega
$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct \rightarrow not quite decoupled.