Computational Methods in Fluid Mechanics

John Hinch and Mahesh Tirumkudulu

Cambridge University and IIT Bombay

29 January - 9 February 2018

GIAN 171002M01 at IIT Bombay

with help from S.J.Cowley, P.J.Dellar & P.D.Metcalfe

Course structure

Three parts:

- Simple Navier-Stokes problem by simple method
 - accuracy, stability, pressure
- Better treatment of general issues
 - discretisation, time-stepping, linear algebra
- Collection of special topics
 - demo FreeFem, hyperbolic, fast multipoles, free surface

1. The driven cavity

Incompressible Navier-Stokes

1

$$\nabla \cdot \mathbf{u} = 0,$$

$$p\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u},$$

2D, $L \times L$ -box

$$\mathbf{u} = 0$$
 on $y = 0$ and $0 < x < L$, and on $x = 0$ or L and $0 < y < L$,

and
$$u = (U(x), 0)$$
 on $y = L$ and $0 < x < L$.

To find the force on the lid

$$F = \int_0^L \mu \left. \frac{\partial u}{\partial y} \right|_{y=L} dx$$

Know your physics

Before writing any code, need to think about physics Converse, thinking about coding can deepen understanding of physics

 $\blacktriangleright \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$

info propagates at **u**, i.e. $\delta x = u \delta t$.

 $\blacktriangleright \ \rho \frac{\partial \mathbf{u}}{\partial t} = \mu \nabla^2 \mathbf{u}$

info diffuses, diffusivity $\nu = \mu/\rho$, i.e. $\delta x = \sqrt{\nu \delta t}$.

• $\rho \frac{\partial \mathbf{u}}{\partial t} = -\nabla p$ with $\nabla \cdot \mathbf{u} = 0$

info at ∞ in 0 time, i.e. speed of sound $= \infty$.

- \blacktriangleright $Re \ll 1$ must resolve fast diffusion of vorticity,
 - $Re \gg 1$ must resolve thin boundary layers,
 - we study Re = 10.

Know your PDE

What is well-posed? Equation + BCs + ICs. Wrong BC: \nexists solution

- ∂φ/∂t + u(x, t) ∂φ/∂x = f(x, t) first order hyperbolic Well posed with IC φ(x, 0) and inflow BC, e.g. at x = a need φ(a, t) if u(a, t) > 0.
 ∂²φ/∂t² = c²∂²φ/∂x² second order hyperbolic Well posed with
 - IC $\phi(x,0)$ and $\phi_t(x,0)$ and
 - BC at both ends either ϕ or ϕ_x or mixed.

- $\nabla^2 \phi = \rho$ Laplace/Poisson equation, elliptic Well posed with BC ϕ or $\partial \phi / \partial n$ or mixed
- $\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2}$ Diffusion equation, parabolic Well posed with IC $\phi(x, 0)$ and
 - BC at both ends either ϕ or ϕ_x or mixed.

Special physics – the corner

- Naming from quadratic forms
 - $\begin{aligned} ax^{2} + bxy + cy^{2} + dx + fy + g &= 0\\ a\frac{\partial^{2}\phi}{\partial x^{2}} + b\frac{\partial^{2}\phi}{\partial x\partial y} + c\frac{\partial^{2}\phi}{\partial y^{2}} + d\frac{\partial\phi}{\partial x} + e\frac{\partial\phi}{\partial y} + f\phi &= 0 \end{aligned}$
 - Numerically
 - hyperbolic tough
 - elliptic costly
 - parabolic safest

- ► Constant lid velocity $\mathbf{u} = (U_0, 0)$ $\rightarrow \sigma \propto r^{-1} \quad \rightarrow F = \infty$
- Better $\mathbf{u} = (U_0 \sin \pi x/L, 0)$
 - $ightarrow \sigma \propto \ln r \quad
 ightarrow F$ difficult numerically
- Therefore we take $\mathbf{u} = (U_0 \sin^2 \pi x/L, 0)$

Non-dimensionalisation

Engineers use dimensional variables in computations but scientists do NOT.

Scale u on U_0 , x and y on L, t on L/U_0 and p on ρU_0^2 . Then

$$Re = \frac{\text{inertial terms } \rho U_0^2 / L}{\text{viscous terms } \mu U_0 / L^2} = \frac{U_0 L}{\nu}.$$

The non-dimensionalised problem

$$\nabla \cdot \mathbf{u} = 0,$$
$$\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u},$$

with BCs

We take ICs

$$u(x, 0) = 0$$
 at $t = 0$ for $0 < x < 1$ and $0 < y < 1$.

We seek solution at Re = 10.

Finally the force, scaled by μU_0

$$F=\int_0^1 \left.\frac{\partial u}{\partial y}\right|_{y=1} dx.$$

Steady State vs Initial Value Problem

EJH recommends IVP, linear.

SS – nonlinear, might not exist, might be unstable.

Extrapolate slow transients to zero (Richardson).

Need not start from rest, but from SS of different Re – crude parameter continuation.

Methods for relaxing to SS \equiv pseudo time-stepping.

Pressure!

Idea: time-step $\mathbf{u}(x, t)$ from t to $t + \Delta t$ using $\partial \mathbf{u} / \partial t$ from the momentum equation But how to find ∇p ?

 $\label{eq:pressure} \begin{array}{l} \mbox{Pressure} = \mbox{``Lagrangian multiplier'' associated} \\ \mbox{with constraint } \nabla \cdot {\bm u} = 0. \end{array}$

Two options:

- Find the ∇p that ensures ∇ · u = 0 - primitive variable formulation
- Eliminate p by forming the vorticity equation
 - streamfunction-vorticity formulation

2. Streamfunction-vorticity formulation

Automatically satisfy constraint $\nabla \cdot \mathbf{u} = 0$ by using the streamfunction representation $\psi(x, y)$

$$u = \frac{\partial \psi}{\partial y}$$
 and $v = -\frac{\partial \psi}{\partial x}$.

In 2D flow vorticity is

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = -\nabla^2 \psi.$$

Solve as decoupled pair

1. At each t given ω , find ψ :

$$\nabla^2 \psi = -\omega$$

with $\psi = 0$ all sides.

2. With ω and now ψ known at t, find ω at $t + \Delta t$:

$$rac{\partial \omega}{\partial t} = -rac{\partial (\psi, \omega)}{\partial (x, y)} + rac{1}{Re}
abla^2 \omega$$

with ω on boundary so $\frac{\partial \psi}{\partial n}$ correct \rightarrow not quite decoupled.

Vorticity equation

Take curl of momentum equation to eliminate p

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \mathbf{0} + \frac{1}{Re} \nabla^2 \omega$$

No stretching in 2D (first term on RHS)

$$\mathbf{u} \cdot \nabla \omega = \psi_y \omega_x - \psi_x \omega_y = -\frac{\partial(\psi, \omega)}{\partial(x, y)}$$

BC1:
$$\mathbf{u} \cdot \mathbf{n} = 0$$
 all sides
 \rightarrow sides = streamline $\rightarrow \psi = 0$.
BC2: tangential velocity
 $\frac{\partial \psi}{\partial y} = \sin^2 \pi x$ on top $y = 1$, $0 < x < 1$
 $\frac{\partial \psi}{\partial y} = 0$ on bottom $y = 0$, $0 < x < 1$
 $\frac{\partial \psi}{\partial x} = 0$ on sides $x = 0$ and 1, $0 < y < 1$