Time integration

Issues

- Accuracy
- Cost
 - ► CPU = cost/step×#steps,
 - storage,
 - programmer's time
- Stability

Spatial discretisation (typically FE or Spectral)

$$\rightarrow u_t = F(u, t)$$

- ▶ Treat by black-box time-integrator
- ► OR recognise spatial structure (typically only for FD)

Lax equivalence theorem

For a well-posed linear problem,

a consistent approximation (local error ightarrow 0 as $\Delta t
ightarrow 0$)

converges to the correct solution

if and only if the algorithm is stable

Stability in time

- 1. Unstable algorithm bad! numerics blow up all Δt , usually rapidly, often oscillates
- 2. Conditionally stable normal stable if Δt not too big
- 3. Unconditionally stable slightly dangerous stable all Δt , inaccurate large Δt

'Stable' = ?

- (i) numerics decays, even if physics does not
- (ii) numerics do not blow up for all t
- (iii) numerics do not blow up much, i.e. converge fixed t e.g. need $\Delta t < a + b/t$

Stiffness, for $u_t = F(u, t)$

How do small disturbances grow/decay?

Linearise + freeze coefficients - occasionally wrong

$$\delta u_t = F'(u_0, t_0) \delta u$$

Find eigenvalues λ of $F'(u_0, t_0)$

Stiff if $\lambda_{\rm max} \gg \lambda_{\rm min}$, typically by 10⁴

Stability controlled by largest $|\lambda|$, need

$$\Delta t < rac{\mathrm{const}}{|\lambda|_{\mathrm{max}}}$$

– may represent boring time behaviour on fine scales If so, use unconditionally stable algorithm with big Δt and inaccurate rending of boring fine details

Forward Euler - 1st order, explicit

For $u_t = \lambda u$

$$\frac{u^{n+1}-u^n}{\Delta t}=\lambda u^n$$

Hence

$$u^{n+1} = (1 + \lambda \Delta t)^{n=t/\Delta t} u^1$$

 $\rightarrow e^{\lambda t} u^1$ as $\Delta t \rightarrow 0$

Case λ real and negative: stable if $\Delta t < \frac{2}{|\lambda|}$

Crank-Nicolson – 2nd order implicit

For $u_t = \lambda u$

$$\frac{u^{n+1} - u^n}{\Delta t} = \lambda \frac{u^{n+1} + u^n}{2}$$

NB: RHS uses unknown u^{n+1} , not a problem for this simple linear problem. Solution

$$u^n = \left(\frac{1 + \frac{1}{2}\lambda\Delta t}{1 - \frac{1}{2}\lambda\Delta t}\right)^n u^0$$

Case $Re(\lambda) < 0$ stable all Δt

Case λ imaginary amplitude correctly constant all Δt although phase drifts

Case λ purely imaginary

$$|1 + \lambda \Delta t| = \left(1 + |\lambda|^2 \Delta t^2\right)^{1/2} > 1$$
 all Δt

so "unstable"

Now

$$\left(1+|\lambda|^2\Delta t^2\right)^{t/2\Delta t} \quad \xrightarrow{\Delta t \to 0} \quad e^{\frac{1}{2}|\lambda|^2\Delta t\,t}$$

i.e. does not blow up much (ϵ) if

$$\Delta t < rac{2 \ln \epsilon}{\lambda|^2 t}$$

Backward Euler – 1st order, implicit

For $u_t = \lambda u$

$$\frac{u^{n+1} - u^n}{\Delta t} = \lambda u^{n+1}$$

So

$$u^n = \left(\frac{1}{1 - \lambda \Delta t}\right)^n u_0$$

But inaccurate if Δt large

E.g. λ real and negative & large $\Delta t = 1/|\lambda|$ gives

$$u(t) \sim e^{\lambda t \ln 2}$$
 cf $e^{\lambda t}$

Leap frog - 2nd order, explicit

$$\frac{u^{n+1} - u^{n-1}}{2\Delta t} = \lambda u^n$$

Two-term recurrence relation

$$u^{n+1} - 2\lambda \Delta t u^n - u^{n-1} = 0$$

has solutions $u^n = A\theta_+^n + B\theta_-^n$ with $\theta_\pm = \lambda \Delta t \pm \sqrt{1 + \lambda^2 \Delta t^2}$

So

$$u^n \sim e^{\lambda n \Delta t} + \epsilon (-1)^n e^{-\lambda n \Delta t}$$

Spurious solution blows up if $Re(\lambda) < 0$

But stable for purely imaginary λ & $\Delta t < 1/|\lambda|$

Error control for RK4

Take 2 steps of Δt from u^n

$$u^{n+2} = A + 2b\Delta t^5 + \dots$$

Take 1 step of $2\Delta t$ from u^n

$$u^* = A + b(2\Delta t)^5 + \dots$$

Extrapolating, 5th order estimate of answer

$$\frac{16}{15}u^{n+2}-\frac{1}{15}u^*$$

Estimate of error

$$\frac{1}{30}(u^*-u^{n+2})$$

– decide if to decrease/increase Δt

Runge-Kutta

E.g. standard 4th order RK, for $u_t = F(u, t)$

$$du^{1} = \Delta t F(u^{n}, t^{n})$$

$$du^{2} = \Delta t F(u^{n} + \frac{1}{2}du^{1}, t^{n} + \frac{1}{2}\Delta t)$$

$$du^{3} = \Delta t F(u^{n} + \frac{1}{2}du^{2}, t^{n} + \frac{1}{2}\Delta t)$$

$$du^{4} = \Delta t F(u^{n} + 1du^{3}, t^{n} + 1\Delta t)$$

$$u^{n+1} = u^{n} + \frac{1}{6}(du^{1} + 2du^{2} + 2du^{3} + du^{4})$$

NB: 4 function calls per step - very expensive

Can vary Δt after each step – adaptive

Good stability, need $\Delta t \lesssim \frac{3}{|\lambda|}$

Implicit Runge-Kutta

$$du^{1} = \Delta t F \left(u^{n} + \frac{1}{4} du^{1} + \left(\frac{1}{4} - \frac{\sqrt{3}}{6} \right) du^{2}, t^{n} + \left(\frac{4}{1} - \frac{\sqrt{3}}{6} \right) \Delta t \right)$$

$$du^{2} = \Delta t F \left(u^{n} + \left(\frac{1}{4} + \frac{\sqrt{3}}{6} \right) du^{1} + \frac{1}{4} du^{2}, t^{n} + \left(\frac{1}{4} + \frac{\sqrt{3}}{6} \right) \Delta t \right)$$

$$u^{n+1} = u^{n} + \frac{1}{2} du^{1} + \frac{1}{2} du^{2}$$

Iterate to find du^1 and du^2 – very expensive

Stable all Δt if $Re(\lambda) \leq 0$

Multi-step methods – use information from previous steps

AB3 Adams-Bashforth, 3rd order, explicit

$$u^{n+1} = u^n + \frac{\Delta t}{12} \left(23F_n - 16F_{n-1} + 5F_{n-2} \right)$$

AM4 Adams-Moulton, 4th order, implicit

$$u^{n+1} = u^n + \frac{\Delta t}{24} \left(9F_{n+1} + 19F_n - 5F_{n-1} + F_{n-2} \right)$$

NB uses 1 function evaluation per step - good

NB difficult to start or change step size Δt – bad

NB Stable $\Delta t \lesssim 1/|\lambda|$

Predictor-corrector

AB3 sufficiently good estimate for u^{n+1} to use in AM4 F_{n+1} , but then 2 function evaluations per step

Navier-Stokes – different methods for different terms

For $u_t + uu_x = u_{xx}$ (no pressure, yet)

$$\frac{u^{n+1} - u^n}{\Delta t} = -\left(uu_x\right)^{n+\frac{1}{2}} + \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} + u_{i+1}^n - 2u_i^n + u_{i-1}^n}{2\Delta x^2}$$

implicit on diffusion for stability at boring fine scales

AB3 explicit on safe advection

$$(uu_x)^{n+\frac{1}{2}} = \frac{1}{12} \left(23 (uu_x)^{n-\frac{1}{2}} - 16 (uu_x)^{n-\frac{3}{2}} + 5 (uu_x)^{n-\frac{5}{2}} \right)$$

Iserles Zig-Zag – 2nd order and sort of upwinding

$$(uu_x)^{n+\frac{1}{2}} = \frac{u_i^{n+1} + u_i^n}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{2\Delta x} + \frac{u_i^n - u_{i-1}^n}{2\Delta x} \right) \quad \text{if} \quad u_i^n > 0$$

Lagrangian methods in $\mathbf{u} \cdot \nabla \mathbf{u}$ dominant

Sympletic integrators

For Hamiltonian (non-dissipative) systems

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}, \qquad \dot{q}_i = \frac{\partial H}{\partial p_i}$$

conserve *H* and projections of volume of phase-space NB Important for integration to long times.

Sympletic integrators have same conservations properties for a numerical approximation to the Hamiltonian $H^{\mathrm{num}}(\Delta t)$

NB must keep Δt fixed

E.g. Störmer-Verlet (sort of leap-frog) – for molecular dynamics

$$p^{n+\frac{1}{2}} = p^n + \frac{1}{2}\Delta t F(r^n)$$

$$r^{n+1} = r^n + \Delta t \frac{1}{m} p^{n+\frac{1}{2}}$$

$$p^{n+1} = p^{n+\frac{1}{2}} + \frac{1}{2}\Delta t F(r^{n+1})$$

Pressure update - 2nd order, exact projection to $\nabla \cdot \mathbf{u} = 0$

Split time-step

$$\frac{u^* - u^n}{\Delta t} = -\left(uu_x\right)^{n + \frac{1}{2}} - \nabla p^{n - \frac{1}{2}} + \nu \nabla^2 \left(\frac{u^* + u^n}{2}\right)$$

Projection

$$u^{n+1} = u^* + \Delta t \nabla \phi^{n+1}$$

with

$$abla^2 \phi^{n+1} = -\nabla \cdot u^* / \Delta t$$
 with BC $\Delta t \frac{\partial \phi^{n+1}}{\partial n} = u_n^{\mathrm{BC}} - u_n^*$

Update

$$\nabla p^{n+\frac{1}{2}} = \nabla p^{n-\frac{1}{2}} - \nabla \left(\phi^{n+1} - \frac{1}{2} \nu \Delta t \nabla^2 \phi^{n+1} \right)$$

Tangential BC

$$u_{\mathrm{tang}}^* = u_{\mathrm{tang}}^{\mathrm{BC}} - \Delta t \nabla \phi^n$$