Time integration Stability in time

Issfezccuracy 1. Unstable algorithm — bad! | |
— numerics blow up all At, usually rapidly, often oscillates
> Cost 2. Conditionally stable — normal
: SCtFo)rli; cost/step xfsteps, — stable if At not too big
> progranyﬁmer's time 3. Unconditionally stable — slightly dangerous
» Stability — stable all At, inaccurate large At

‘Stable’ = 7

Spatial discretisation (typically FE or Spectral)
(i) numerics decays, even if physics does not

— ur = F(u,t) N _
(i) numerics do not blow up for all ¢

(iii) numerics do not blow up much, i.e. converge fixed t

» Treat by black-box time-integrator
e.g. need At < a-+ b/t

» OR recognise spatial structure (typically only for FD)

Lax equivalence theorem Stiffness, for uy = F(u, t)

How do small disturbances grow/decay?
Linearise + freeze coefficients — occasionally wrong

Sur = F'(uo, to)du

For a well-posed linear problem, Find eigenvalues \ of F'(up, to)
a consistent approximation (local error — 0 as At — 0) SHff if Amax > Amin,  typically by 104
converges to the correct solution N
Stability controlled by largest |\|, need

if and only if the algorithm is stable

const

At < ———
| Almax

— may represent boring time behaviour on fine scales
If so, use unconditionally stable algorithm with big At and
inaccurate rending of boring fine details



Forward Euler — 1st order, explicit

For uy = Au
un+1 —yn
—_— ="
At
Hence

un+1 — (1 + )\At)n:t/At Ul
— Myl as At — 0

Case A real and negative: stable if At < ‘2—‘

Crank-Nicolson — 2nd order implicit

For uy = Au

n+1

u —uyn un+1 + u"

Ar T2

NB: RHS uses unknown u"*1, not a problem for this simple linear
problem. Solution
1 n
N 1+ 5)\At 0
= —5—— | u
1—-35)At

Case Re(A\) <0 stable all At

Case X imaginary  amplitude correctly constant all At
although phase drifts

Case \ purely imaginary

1/2

11+ MAt = (1+ [APA)7" >1 all At
so “unstable”
Now

(1+ ARAR)2A0 A0, A

i.e. does not blow up much (e) if

2lne

At < ——
< A2t

Backward Euler — 1st order, implicit

For uy = Au

n+1 n

v
At

n 1 5
v (1—)\At> o

Very stable  just unstable in |1 — AAt| <1

Vs

So

But inaccurate if At large
E.g. A real and negative & large At = 1/|)\| gives

U(t) ~ e)\tln2 of e)\t



Leap frog - 2nd order, explicit Runge-Kutta

E.g. standard 4th order RK, for u; = F(u, t)

24t dut = AtF(u", t")

Two-term recurrence relation du? = AtF(u 41 du " lAt)

o At — u" =0 du® = AtF(u" + Ldv?, t" + L At)

du®* = AtF(u" + 1c/u3 t" + 1At)

has solutions u" = Af" + BO" with 0. = AAt + /1 + N2At2

* * u™l ="+ é(du + 2du? + 2du® + du*)
So

U ~ @ABE (1) AAE NB: 4 function calls per step — very expensive

Spurious solution blows up if Re(\) <0 Can vary At after each step — adaptive

oy < 3
But stable for purely imaginary A & At < 1/|)]| Good stability, need At S5 1y

Error control for RK4 Implicit Runge-Kutta

Take 2 steps of At from u”

= A+ 2bAt> +
Take 1 step of 2At from u” dut = AtF (u n 1d _1_(% _ ?)duz,t"—k (% B ?)At)
ut = A+ b(2AEP + ... di? = AtF (" + (3 + R)dut + 2, 1" + (3 + 2)Ar)
Extrapolating, 5th order estimate of answer ™t =" %du1 + %du
Eun—i-Z _ iu* lterate to find du® and du? — very expensive
15 15

Estimate of error Stable all At if Re(A\) <0
3710(1.1* o un+2)

— decide if to decrease/increase At



Multi-step methods — use information from previous steps Sympletic integrators

For Hamiltoni -dissipati t
AB3 Adams-Bashforth, 3rd order, explicit or Hamiltonian (non-dissipative) systems
At . OH . oH
u"h = " 4 T (23F, — 16F,1 + 5F,2) Pi="0q 77 op;

conserve H and projections of volume of phase-space
AM4 Adams-Moulton, 4th order, implicit NB Important for integration to long times.

Sympletic integrators have same conservations properties for a

At
+1 _ . . o
u™t = 0"+ o (9Fns1+19F, —5F1 4 Fr2) numerical approximation to the Hamiltonian H™™(At)

NB uses 1 function evaluation per step — good NB must keep At fixed

NB difficult to start or change step size At — bad E.g. Stormer-Verlet (sort of leap-frog) — for molecular dynamics
NB Stable At < 1/|)|

p"t: = p" + LALF(r")

Predictor-corrector 1
Pl = At%p"+2

ABS3 sufficiently good estimate for u™! to use in AM4 F, 1,

but then 2 function evaluations per step p"tt = p"+% + SAtF(r"th)
Navier-Stokes — different methods for different terms Pressure update - 2nd order, exact projection to V-u =10
P proj
For us + uuy = uyxx (no pressure, yet) Split time-step
untl —yn 1 ut—u" i o,n—1 o (Ut u”
(s = ()™ v v (2
+1 +1 1
n ”;7+1 —2u" + ”?—Jrl +uly — 207 +u Projection
TN u™ = ot AtV
implicit on diffusion for stability at boring fine scales with
AB3 explicit on safe advection 8¢”+1
. . , ; V2"l = v .u* /At with BC At =uBC —u}
(uuy)™2 = 1—12 (23 (uux)""2 — 16 (uuy)" 2 +5 (qu)”_E) On
Update

Iserles Zig-Zag — 2nd order and sort of upwinding

Vp™t: = Vp' i — V (6" — LuAev2entl)
A (A el S WP
= - + if u’>0

N

(uux)"+

2 2Ax 2Ax Tangential BC

* BC n
u =u — AtV
Lagrangian methods in u- Vu dominant tang ~ “tang ¢



