Linear Algebra – brief review

Many good long textbooks

DO NOT CODE – use excellent free packages

Nonlinear fluids \rightarrow many linear sub-problems, e.g. Poisson problem, e.g. linear stability

Questions

- \blacktriangleright "matrix inversion": $Ax = b$
- \blacktriangleright eigenvalues: $Ae = \lambda e$

Matrices

- \blacktriangleright dense or sparse
- \blacktriangleright symmetric, positive definite, banded,...

LAPACK

Free packages. Download library.

Search engine to find correct routine for you

- \blacktriangleright linear equations or linear least squares. or eigenvalues, singular decomposition, generalised
- \triangleright precision: single/double, real/complex
- \blacktriangleright matrix type: symmetric, SPD, banded

Driver routine, calls computational routines, calls auxiliary (BLAS)

Real, single, general matrix, linear equations SGESV(N, Nrhs, A, LDA, IPIV, B, LBD, info) where matrix A is $N \times N$, with Nrhs b's in B.

Solving linear simultaneous equations

1. Gaussian elimination

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$

Divide 1st eqn by a_{11} , so coef x_1 is 1

Subtract 1st eqn $\times a_{k1}$ from kth eqn, so coef x_1 becomes 0 Repeat on $(n-1) \times (n-1)$ subsystem of eqn $2 \rightarrow n$ Repeat on even smaller subsystems

Finally back-solve

$$
a_{nn}x_n = b_n \rightarrow x_n
$$

\n
$$
a_{n-1}x_{n-1} + a_{n-1}x_n = b_{n-1} \rightarrow x_{n-1}
$$

\n
$$
\vdots
$$

\n
$$
\rightarrow x_1
$$

LU decomposition – rephrase Gaussian elimination

Lower and Upper triangular

$$
L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ . & 1 & 0 & 0 \\ . & . & 1 & 0 \\ . & . & . & 1 \end{pmatrix} \qquad U = \begin{pmatrix} . & . & . & . \\ 0 & . & . & . \\ 0 & 0 & . & . \\ 0 & 0 & 0 & . \end{pmatrix}
$$

Step
$$
k = 1 \rightarrow n
$$
:
\n
$$
u_{kj} = a_{kj} \text{ for } j = k \rightarrow n
$$
\n
$$
\ell_{ik} = a_{ik}/a_{kk} \text{ for } i = k \rightarrow n
$$
\n
$$
a_{ij} \leftarrow a_{ij} - \ell_{ik} u_{kj} \text{ for } i = k + 1 \rightarrow n, \text{ for } j = k + 1 \rightarrow n
$$

For a dense matrix $\frac{1}{3}n^3$ multiplies For a tridiagonal matrix, avoiding zeros $2n$ multiplies Solve $LUx = b$ by

Forward $Ly = b$

$$
\begin{array}{rcl}\n\ell_{11}y_1 & = & b_1 \rightarrow & y_1 \\
\ell_{21}y_1 & + & \ell_{22}y_2 & = & b_1 \rightarrow & y - 2 \\
\vdots & & & \vdots \\
 & & & & y_n\n\end{array}
$$

Backward $Ux = y$

$$
u_{nn}x_n = y_n \to x_n
$$

$$
u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_n = y_{n-1} \to x_{n-1}
$$

$$
\vdots
$$

$$
\to x_1
$$

Finding LU is $O(n^3)$ but solving $L Ux = b$ for a new b is only $O(n^2)$

Errors $Ax = b$

Small ϵ error in b could become ϵ/λ_{\min} error in solution, while worst solution is b/λ_{max} Thus relative error in solution could increase by factor

$$
K = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} = \text{condition number of } A
$$

Theoretically LU decomposition gives bigger errors, but not often

LU: pivoting

Problem at step k if $a_{kk} = 0$ Find largest a_{ik} in $j = k \rightarrow n$, say at $j = \ell$ Swap rows k and ℓ – use index mapping (permutation matrix)

Partial pivoting $=$ swapping rows Full pivoting $=$ swap rows and columns $-$ rarely better

- \triangleright Note det $A = \prod_i u_{ii}$
- \triangleright Symmetric A: $A = LDL^T$ with diagonal D
- ► Sym & positive definite: $A = (LD^{1/2})(LD^{1/2})^T$ Cholesky
- \triangleright Tridiagonal A: L diagonal and one under, U diagonal and one above.

QR decomposition

- $A = QR$
- \triangleright R upper triangular
- \blacktriangleright Q orthogonal, $QQ^T = I$, i.e. columns orthonormal So at no cost $Q^{-1} = Q^T$
- \blacktriangleright May not stretch/increase errors like LU
- \triangleright Used for eigenvalues
- \blacktriangleright det $A = \prod_i r_{ii}$
- Q not unique

3 methods: Gram-Schmidt, Givens, Householder

QR Gram-Schmidt

Columns of A a_1, a_2, \ldots, a_n

$$
\begin{array}{llll}\mathsf{q}'_1&= \mathsf{a}_1 & \mathsf{q}_1= \mathsf{q}'_1/|\mathsf{q}'_1\\ \mathsf{q}'_2&= \mathsf{a}_2 & -(\mathsf{a}_2 \cdot \mathsf{q}_1)\mathsf{q}_1 & \mathsf{q}_2= \mathsf{q}'_2/|\mathsf{q}'_2\\ \mathsf{q}'_3&= \mathsf{a}_3 & -(\mathsf{a}_3 \cdot \mathsf{q}_1)\mathsf{q}_1 & -(\mathsf{a}_3 \cdot \mathsf{q}_2)\mathsf{q}_2 & \mathsf{q}_3= \mathsf{q}'_3/|\mathsf{q}'_3\\ \vdots\end{array}
$$

|

|

|

 $Q =$ matrix with columns $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$

Let

$$
r_{ii} = |\mathbf{q}'_i|, \quad \text{and} \quad r_{ij} = \mathbf{a}_j \cdot \mathbf{q}_i, \quad i < j
$$

Then

$$
\mathbf{a}_j = \sum_{i=1}^j \mathbf{q}_j r_{ij} \qquad \text{i.e.} \quad A = QR
$$

Better: when produce q_i project it out of a_j $j > i$

QR Householder

 $Q =$ product of many reflections

$$
H = \left(I - 2\frac{\mathbf{h}\mathbf{h}^T}{\mathbf{h}\cdot\mathbf{h}}\right)
$$

Take $\mathbf{h}_1 = \mathbf{a}_1 + (\alpha_1, 0, \dots, 0)^T$ with $\alpha_1 = |\mathbf{a}_1|$ sign(a_{11}) So

 $\mathbf{h}_1 \cdot \mathbf{a}_1 = |\mathbf{a}_1|^2 + |\mathbf{a}_{11}||\mathbf{a}_1|$ and $\mathbf{h}_1 \cdot \mathbf{h}_1 = \text{twice}$

Hence

$$
H_1\mathbf{a}_1=(-\alpha_1,0,\ldots,0)^T
$$

Now work on $(n - 1) \times (n - 1)$ subsystem in same way

Note Hx is $O(n)$ operations, not $O(n^3)$ Hence forming Q is $O(n^3)$

QR Givens rotation

 $G_{ii}A$ alters rows and columns *i* and *j* Choose θ to zero an off-diagonal Strategy to avoid filling previous zeros Can parallelise

Sparse matrices

converges if $|B^{-1} \mathcal{C}| < 1$, e.g. SOR

- $-$ actually a direct method, but usually converges well before *n* steps
- Solve $Ax = b$ by minimising quadratic

$$
f(x) = \frac{1}{2}(Ax - b)^T A^{-1}(Ax - b) = \frac{1}{2}x^T Ax - x^T b + \frac{1}{2}b^T Ab
$$

with

$$
\nabla f = Ax - b
$$

From x_n look in direction **u** for minimum

$$
f(\mathbf{x}_n + \alpha \mathbf{u}) = f(\mathbf{x}_n) + \alpha \mathbf{u} \cdot \nabla f_n + \frac{1}{2} \alpha^2 \mathbf{u}^T A \mathbf{u}
$$

i.e. minimum at $\alpha=-\mathbf{u}\cdot\nabla f_n/\mathbf{u}^\mathcal{A}\mathbf{u}$

Choose \mathbf{u} ? steepest descent $\mathbf{u} = \nabla f$? NO

Conjugate Gradient Algorithm

Start x_0 and u_0 Residual $r_n = Ax_n - b = \nabla f_n$ **Iterate**

$$
x_{n+1} = x_n + \alpha u_n
$$

\n
$$
r_{n+1} = r_n + \alpha A u_n
$$

\n
$$
u_{n+1} = r_{n+1} + \beta u_n
$$

\n
$$
u_{n+1} = r_{n+1} + \beta u_n
$$

\n
$$
u_n = -\frac{r_{n+1}^T A u_n}{r_n^T A u_n}
$$

Note only one matrix evaluation per iteration – good sparse

Can show u_{n+1} conjugate all u_i $i = 1, 2, \ldots, n$

Can show $\alpha = \frac{r_n^T r_n}{T_A}$ $\frac{n}{u_n^T A u_n}$, $\beta =$ $r_{n+1}^T r_{n+1}$ $r_n^T r_n$

GC not steepest descent ∇f

Steepest descent \rightarrow rattle from side to side across steep valley with no movement along the valley floor

Need new direction **v** which does not reset **u** minimisation

 $f(\mathbf{x}_n + \alpha \mathbf{u} + \beta \mathbf{v}) = f(\mathbf{x}_n) + \alpha \mathbf{u} \cdot \nabla f_n + \frac{1}{2} \alpha^2 \mathbf{u}^T A \mathbf{u}$ $+\alpha\beta\mathbf{u}^T A\mathbf{v} + \beta\mathbf{v}\cdot\nabla f_n + \frac{1}{2}\beta^2\mathbf{v}^T A\mathbf{v}$

Hence need $\mathbf{u}^T A \mathbf{v} = 0$ "conjugate directions"

Precondition $Ax = b$ same solution as $B^{-1}Ax = B^{-1}b$ Choose B with easy inverse and $B^{-1}A$ sparse Typical $ILU =$ incomplete LU , few large elements

Non-symmetric A GMRES minimises $(Ax - b)^T(Ax - b)$ – but condition number K^2 $GMRES(n)$ restart after $n -$ avoids large storage

If tough, then $SVD =$ singular value decomposition

$$
A = USV = \sum_i u_i^T \lambda_i v_i
$$

with v and u eigenvalues and adjoints, λ_i eigenvalues

- \triangleright No finite/direct method must iterate
- \triangleright A real & symmetric nice orthogonal evectors
- \triangleright A not symmetric possible degenerate cases also non-normal modes (& pseud-spectra. . .)

$$
\frac{d}{dt}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & k^2 \\ 0 & -1 - k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{IC} \quad x(0) = 0y(0) = 1
$$

has solution $x = k(e^{-t} - e^{(1+k)t})$ which eventually decays but before is k larger than IC.

Henceforth A real and symmetric

Power iteration – for largest evalue

Start random x_0 Iterate a few times $x_{n+1} = Ax_n = A^n x_0$

 x_n becomes dominated by evector with largest evalue, so

$$
\lambda_{\rm approx} = |Ax_x|/|x_n|, \qquad e_{\rm approx} = Ax_x/|Ax_n|
$$

With this crude approximation invert

$$
(A - \lambda_{\mathrm{approx}}I)^{-1}
$$

which has one very large evalue $1/(\lambda_{\text{correct}} - \lambda_{\text{approx}})$, so power iteration on this converges very rapidly

Find other evalues with μ -shifts $(A - \mu I)^{-1}$

Jacobi – small A only

Find maximum off-diagonal a_{ii}

Givens rotation G_{ij} with θ to zero a_{ij} , and a_{ji} by symmetry

$$
A' = GAG^T
$$
 has same evaluates

Does fill in previous zeros,

but sum of off-diagonals squared decreases by a_{ij}^2

Hence converges to diagonal ($=$ evalues) form

Main method

Step 1: reduce to Hessenberg H, upper triangular plus one below diagonal

Arnoldi (GS on Kyrlov space $q_1, Aq_1, A^2q_1, \ldots$) Given unit q_1 , step $k = 1 \rightarrow n - 1$

$$
v = Aq_k
$$

for $j = 1 \rightarrow k$ $H_{jk} = q_j \cdot v$, $v \leftarrow v - H_{jk}q_j$

$$
H_{kk} = |v|
$$

$$
q_{k+1} = v/H_{k+1}k
$$

Hence

original
$$
v = Aq_k = H_{k+1,k}q_{k+1} + H_{kk}q_k + \ldots + H_{1k}q_1
$$

\ni.e. $A(q_1, q_2, \ldots, q_n) = (q_1, q_2, \ldots, q_n) H$

\ni.e. $AQ = QH$ or $H = Q^TAQ$ with same evaluates as A

Main method, step 2

- $H = Q^T A Q$ Hessenberg
- A symmetric \rightarrow H symmetric, hence tridiagonal Hence reduce 'for $j = 1 \rightarrow k$ ' to 'for $j = k - 1, k'$, $Cost \rightarrow O(n^2)$ (Lanzcos)
- NB: making q_{k+1} orthogonal to q_k & q_{k-1} gives q_{k+1} orthogonal to q_j $j=k,k-1,k-2,\ldots,1$ cf conjugate gradient

a. QR Find QR decomposition of H Set $H' = RQ = Q^T A Q$ – remains Hessenberg/Tridiagonal – off-diagonals reduced by λ_i/λ_i \rightarrow converges to diagonal, of evalues b. Power iteration – quick when tridiagonal

c. Root solve det $(A - \lambda I) = 0$ – quick if tridiagonal

BUT USE PACKAGES