
Boundary Integral/Element Method

I For linear problems with known simple Greens functions

e.g. potential flows, Stokes flows

I Good for complex geometry

I Very good for free surface problems needing only u on the

surface

Laplace equation

∇2φ = 0 in the volume V

φ or
∂φ

∂n
given on the surface S

where n the unit normal to the surface out of the volume.

Need Greens function G (x, ξ), viewing ξ as a fixed parameter

∇2
xG = δ(x− ξ) for x in V

G need not satisfy any BC on S

∇x means differentiate with respect to x

Greens identity (divergence theorem)

∫
S

(
φ
∂G

∂n
− ∂φ

∂n
G

)
dS(x) =

∫
V

(
φ∇2G −∇2φG

)
dV (x)

=

∫
V
φ(x)δ(x− ξ) dV (x)

= φ(ξ)×


0 if ξ outside V ,

1 if ξ inside V ,
1
2 if ξ on smooth S ,
1
4Ω if ξ at corner of S with solid angle Ω.

Boundary integral equation

For ξ on smooth S

1
2φ(ξ) =

∫
S

(
φ
∂G

∂n
− ∂φ

∂n
G

)
dS(x)

Either given φ|S , solve for
∂φ

∂n
|S

Or given
∂φ

∂n
|S , solve for φ|S

Then find φ inside V by evaluation integral with 1 replacing 1
2

For exterior problem, add φ∞(ξ) to RHS of integral equation



Greens functions

Normally use ‘free-space’ Greens functions

in R3: G = − 1

4π|x− ξ|
,

∂G

∂n
=

(x− ξ) · n(x)

4π|x− ξ|3

and in R2: G =
1

2π
ln |x− ξ|, ∂G

∂n
=

(x− ξ) · n(x)

2π|x− ξ|2

Become elliptic functions for axisymmetric

Sometimes use images so G satisfies BCs (simple geometries)

Eigensolutions

Interior problem has one eigensolution

φ = 1 and
∂φ

∂n
= 0 on S

corresponding to
φ(x) = 1 in V

Associated constraint ∫
S

∂φ

∂n
dS = 0

from zero volume sources in ∇2φ = 0 in V .

Integrand is singular

For fixed ξ on S and x moving on S

G ∝ 1

|x− ξ|
in R3, G ∝ ln |x− ξ| in R2.

Integrable but singular – take care numerically

On smooth S
n(x) · (x− ξ) ∼ 1

2κ|x− ξ|2,

where κ is the curvature. Hence

∂G

∂n
∼ κ

8π|x− ξ|
in R3, G ∝ κ

4π
in R2.

So no more singular
Hence need numerically smooth S

Discretise

1 Divided up S into ‘panels’
in R2 a curve divided into segments
in R3 noramlly triangles

2 Represnt unknowns φ and ∂φ/∂n by basis functions fi (x) over
the panels, e.g. piecewise constants/linear (or B-splines)

φ(x) =
∑

Φi fi (x),
∂φ

∂n
=
∑

DΦi fi (x)

with unknown amplitudes Φi and DΦi .

3 Satisfy integral equation at collocation points
or by least squares or with weighted integrals.

Suitable collocations points are:
centre of panels for piecewise constant basis functions
vertices of panels for piecewise linear basis functions.



Discretised integral equation

One thus forms a discretised version of the integral equation in
terms of the amplitudes Φi and DΦi(

1
2 I − DG

)
Φ = −GDΦ,

where the matrix elements are

DGij =

∫
S
fj(x)

∂G

∂n
(x, ξ) dS(x), and Gij =

∫
S
fj(x)G (x, ξ) dS(x),

both evaluated at ξ = xi .

Evaluation of G and DG

Short range integrals (if splines must use B-splines)

Often use Gaussian integration – avoids singular point x = ξ

Often use trapezoidal integration for |i − j | > 3 or 4

Gaussian poor for self and next-to-self panels |i − j | ≤ 1

8pt Gaussian → error 3 10−15 in
∫ π
0 sin x , but 9 10−3 in

∫ 1
0 ln x

So subtract off the singularity and evaluate analytically

G (x , ξ) ∼ a(ξ) ln |x − ξ|+ regular term.∫ ξ+δ2

ξ−δ1
a(ξ) ln |x − ξ| dx = a(ξ) (δ2 ln δ2 − δ2 + δ1 ln δ1 − δ1) .

Regular term safely by the trapezoidal rule.
Similarly the next-to-self panel, if not one more beyond.

Avoiding eigensolution

Invert singular matrices(
1
2 I − DG

)
Φ = −GDΦ,

in space orthogonal to eigensolution

Fix 1 Rely on truncation error to keep condition number finite

Fix 2 Make eigenvlue α rather than 0

A′ = A + αee†

For interior problem

e = (1, 1, . . . , 1) and
(
e†
)
j

=

∫
S
fj dS

(so long as
∑

fi (x) ≡ 1)

Tests

In two dimensions

φ = rk cos kθ

with
∂φ

∂n
= n · ∇φ = nrkr

k−1 cos kθ − nθkr
k−1 sin kθ,

and similarly in three dimensions.

Test error is O(∆x2) if piecewise linear bassis functions,
and O(∆x4) if cubic splines



Costs

Boundary integral method has unknowns only on surface, so costs
less?

I Volume method N2 points in 2D, N3 points in 3D
Fast Poisson solver (need regular geometry) N lnN steps

Cost N3 lnN or N4 lnN

I Surface method 4N points in 2D, 6N2 points in 3D
Boundary integral method has dense matirx 1

3(.)3 inversion
Costs 11N3 or 72N6

But BIM good for complex or ∞ geoemetry

Reduce cost to (.)2 by interation from last time-step

Try Fast Multipoles

Free surface potential flows

Start time step with known surface S(t) and potential φ(x, t)
known on S
Use BIM to find ∂φ/∂n on S , → ∇φ
Evolve surface

Dx

Dt
= ∇φ for points on S

Evolve surface potential

Dφ

Dt
= 1

2 |∇φ|
2 − g · x− γ

ρ
κ− patm for points x on S ,

Capillary waves mean ∆t <
√
ρ/γ∆x3/2

A good test is the vibration frequencies of an isolated drop.

Problem: conserve energy → accumulate numerical noise in short
capillary waves, so smooth or Fourier filter

Stokes flows

1
2u(ξ) =

∫
S

(
(σ · n) · G− u ·K · n

)
dS(x),

with the Greeens function, called a Stokeslet, and its derivative

G =
1

8πµ

(
I
1

r
+

r r

r3

)
and K = − 3

4π

r r r

r5
, where r = x− ξ.

For drops, outside minus inside, so only need [σ · n] = −γκn

1
2(µin + µout)u(ξ) =

∫
S

(
[σ · n] · G− (µin − µout)u ·K · n

)
dS(x),

Eigensolutions of rigid body motion for interior problem – no
motion from constant pressure


