
Fast Poisson Solvers

I Multigrid

I Fast Fourier Transforms

I Domain Decomposition

I Fast Multipoles

Multigrid

Here for 2D, Finite Differences, N×N square, N = 2m.

I Direct inversion of N2 × N2 matrix → 1
3N

6 operations

I Gauss-Seidel N2 iterations → N4 operations

I Successive-Over-Relaxtion N iterations → N3 operations

I Multigrid → N2 operations.

Problem with Gauss-Seidel: slow diffusion across grid of longwave
errors, shortwave errors diffuse rapidly
Hence tackle longwave errors on a faster coarse grid

Coarsest grid ∆x = 1
2 , one interior point

Finest grid ∆x = 1
2m , (2m − 1)2 interior points

Multigrid - sequence of problems

Sequence of Poisson problems

Akxk = bk ,

for grids k = m, the finest, to k = 1, the coarsest.

Make several V-cycles

Each cycle starts at the finest, descends one level at a time to the
coarsest and then ascends back to the finest.

For the first cycle, start iteration with xm = 0.
For subsequent cycles, start with xm from previous V-cycle.

V-cycle, the descent

Starting with k = m
I Make a couple of Gauss-Seidel iterations of Akxk = bk .
I Produces xapproxk . Store for later use
I Calculate residue

resk = bk − Akx
approx
k .

I Coarsen residue for forcing on the next coarser grid

bk−1 = Ckresk where Ck = 1
16

1 2 1
2 4 2
1 2 1

 .

I Store bk−1 for later use
I Zero xk−1 for starting iterations
I To courser grid: k → k − 1
I If k > 1 go to the top of this list

End descent on coursest grid (k = 1) with just one internal point,
so A1x1 = b1 is one equation in one unknown, solved exactly.

V-cycle, the ascent

Starting with k = 2.

I Courser solution xk−1 interpolated to finer grid

xcorrectionk = Ikxk−1 where Ik = 1
4

1 2 1
2 4 2
1 2 1

 .

I Add this to stored xapproxk from descent

xbetter approx
k = xapproxk + xcorrectionk

I Make a couple of Gauss-Seidel iterations of Akxk = bk
starting from xbetter approx

k , using stored bk
I To finer grid: k → k + 1

I If k < m go to top of this list

End ascent with xm

Multigrid not: first solve coursest Poisson, then interpolate for
starting finer. Coarsening residue gives different forcing

Multigrid – costs

Solve on 256×256 grid

∇2ψ = −2π2 sin(πx) sin(πy)

Residue vs
#V-cycles × #GS iterations

From top, GS iterations = 1,3,2

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30

’mres8l2i’ u ($1*3):5
’mres8l1i’ u ($1*2):5
’mres8l3i’ u ($1*4):5

Error reduces by 10 with 2 GS iterations at each level per V-cycle

8N2 cost per V-cycle

Hence for 10−4 accuracy, cost is 32N2 cf 2N3 by SOR

Fast Fourier Transforms

See spectral methods for details of making fast transform

Poisson problem trivial in Fourier space. Cost in transforms.

For N×N problem in 2D, there are N2 Fourier amplitudes.

I Simple calculation of amplitudes cost N4.

I Orszag speedup gives N3.

I Fast Fourier Transform reduces to N2 lnN

For 3D channel flow, FT in 2 periodic directions, FD in 3rd

Invert FD tridiagonal → cost N3 lnN

Domain decompostion

Good for complex geometry, very large problems – reduces memory

requirements, FE and FD, parallelisable

I Divide domain into many sub-domains

I For each sub-domain, identify internal points which only

involve internal variables x and boundary variables y .

I Solve internal variables x in terms of boundary variables y

I Solve reduced ‘Schur complement’ for boundary variables y .

Domain decomposition

For Poisson problem Ax = b, and K subdomains,
internal variables x1, x2, . . . , xK boundary variables y

Internal problems
Akxk + Bky = bk .

Boundary problem

C1x1 + C2x2 + . . .+ CKxK + Dy = b0.

i.e. 
A1 B1

A2 B2
...

...
. . .

...
AK BK

C1 C2 · · · CK D




x1
x2
...
xK
y

 =


b1
b2
...
bK
b0



Domain decomposition

Solution of internal problems, parallelisable, small memory each

xk = A−1k (bk − Bky).

Hence problem for boundary variables(
D − C1A

−1
1 B1 − · · · − CKA

−1
K BK

)
y = b0−C1A

−1
1 b1−· · ·−CKA

−1
K bK .

If using direct LU inversion

I N×N, full domain costs N6

I K subdomains, cost N6/K 3 per subdomain + N3K 3/2

boundary

I e.g. N = 100, K = 25: full 1012, DD parallel 109 operations

I N×N×N, full domain costs N9

I K subdomains, cost N9/K 3 per subdomain + N6K boundary

I e.g. N = 100, K = 27: full 1018, DD parallel 1014 operations

Fast Multipole Method

For long range interations (potential flow or Stokes flow)

between N point-particles seems N2 problem

Clustering effect of far particles (Barnes-Hut) gives N lnN

Making clusters multipoles + polynomial local effects

(Greengard-Rokhlin) gives N

Here in 2D for

w(zi) =
N∑
j 6=i

qj ln(zi − zj),

Trees, roots and leaves

Hierarchy of domains: divide initial square box into 4 equal
squares; divide each sub-square into 4;
continue through ln4N levels, so on average only one in smallest.
Some smallest will be empty, some contain more than one.

Tree structure: at any level, smaller box within is a ‘child’, larger
box which contains it is the ‘parent’.
Top of tree is ‘root’.
Once branch contains no particle stop subdivision,
Smallest non-empty box down a branch is a ‘leaf’.

Barnes-Hut algorithm

Upward pass from leaves to root, one level at a time

I Sum charges qc to charge of parent qp =
∑

qc .

I Find center of mass of charges zp =
∑

zcqc/
∑

qc .

Downward pass for each particle, starting one below root

I If box is far, then contribution from cluster

I If box is not far and not end, go down a level

I If box is not far and end, sum contributions of individual

particles

A box which is not adjacent is far.

Cost in 2D is 27N ln4N, beats N2 if N > 200

Cost in 3D is 189N ln8N, beats N2 if N > 2000

Fast Multipoles – upward pass

Far shifts of point charge at zi to multipoles about center zc

ln(z − zi) = ln(z − zc) +
∑
r=1

(zc − zi)
r

r(z − zc)r
.

Similary shift multipole at zi

1

(z − zi)m
=
∑
r=0

bmr
(zc − zi)

r

(z − zc)m+r
,

where bmr is a binomial coefficient.

Upward pass from leaves to root

I Use far shifts to move multipoles of children to centre of
parent

Fast Multipoles – downward pass

Local shift of polynomial variation centred on parent zp to centred
on child zc

(z − zp)m =
m∑
r=0

cmr (z − zc)r (zc − zp)m−r ,

where cmr is a binomial coefficient.

Local expansion about centre of child at zc of multipole at zb

1

(z − zb)m
=
∞∑
r=o

bmr
(z − zc)r

(zc − zb)m+r
.

Fast Multipoles - downward pass

Downward pass starting at root-2

I Box inherits from parent via local shift

I Plus local expansion input from 27 newly far boxes with
parent-boxes adjacent to own parent

At lowest level

I Evaluate resulting field at each particle

I Add direct particle-particle from particle within own box and 8
adjacent boxes

Fast Multipoles

Errors from first multipole order not included mmax, in 2D

Error ≤
(

1

2
√

2

)mmax+1

Need mmax = 6 for 10−3 accuracy (mmax = 8 in 3D)

Costs in 2D

8N + 4
3(mmax + 1)N + 36(mmax + 1)2N

So for 10−3 accuracy, need N > 104 before faster than N2 direct
particle-particle interactions

Costs in 3D
26N + m2

maxN + 189m4
maxN

So for 10−3 accuracy, need N > 106 before faster than N2 direct
particle-particle interactions

