Fast Poisson Solvers Multigrid

Here for 2D, Finite Differences, N x N square, N = 2™,
» Direct inversion of N? x N? matrix — %N6 operations

» Gauss-Seidel N? iterations — N* operations

> Multigrid . . . . 3 .
> Successive-Over-Relaxtion N iterations — N° operations
» Fast Fourier Transforms » Multigrid — N? operations.
» Domain Decomposition Problem with Gauss-Seidel: slow diffusion across grid of longwave
_ errors, shortwave errors diffuse rapidly
» Fast Multipoles

Hence tackle longwave errors on a faster coarse grid

Coarsest grid Ax = % one interior point

Finest grid Ax = 5, (2™ — 1) interior points

Multigrid - sequence of problems V-cycle, the descent

Starting with k = m
» Make a couple of Gauss-Seidel iterations of Axxyx = by.
» Produces x;P*"*. Store for later use
» Calculate residue

Sequence of Poisson problems

AXi = by,

resk = by — Arxg 0.
for grids k = m, the finest, to k = 1, the coarsest. » Coarsen residue for forcing on the next coarser grid

1 21

Make several V-cycles
bx_1 = Cxres, where C, = % 2 4 2
1 21

Each cycle starts at the finest, descends one level at a time to the

coarsest and then ascends back to the finest.
Store by_1 for later use

| 4
» Zero xyx_1 for starting iterations
» To courser grid: k > k—1
> If k > 1 go to the top of this list
End descent on coursest grid (k = 1) with just one internal point,
so A1x1 = by is one equation in one unknown, solved exactly.

For the first cycle, start iteration with x,, = 0.
For subsequent cycles, start with x,,, from previous V-cycle.



V-cycle, the ascent

Starting with k = 2.
» Courser solution x,_1 interpolated to finer grid

XEOI‘I"eCtIOH = /ka—l where /k = %

N =
N BN
=N =

> Add this to stored x;P”"** from descent

better approx approx i
Xk pPp — kap + XI((:orrectlon

» Make a couple of Gauss-Seidel iterations of Axxi, = by

starting from x}fetter APPIOX " ising stored by

» To finer grid: k > k+1
» If k < m go to top of this list
End ascent with xn,

Multigrid not: first solve coursest Poisson, then interpolate for
starting finer. Coarsening residue gives different forcing

Fast Fourier Transforms

See spectral methods for details of making fast transform
Poisson problem trivial in Fourier space. Cost in transforms.
For N x N problem in 2D, there are N? Fourier amplitudes.
» Simple calculation of amplitudes cost N*.
» Orszag speedup gives N3.

» Fast Fourier Transform reduces to N2 In N

For 3D channel flow, FT in 2 periodic directions, FD in 3rd

Invert FD tridiagonal — cost N3In N

Multigrid — costs

Solve on 256 x 256 grid

V2 = =272 sin(7x) sin(my)

Residue vs
#V-cycles x #GS iterations

From top, GS iterations = 1,3,2

Error reduces by 10 with 2 GS iterations at each level per V-cycle

8N? cost per V-cycle
Hence for 10~ accuracy, cost is 32N? cf 2N3 by SOR

Domain decompostion

Good for complex geometry, very large problems — reduces memory

requirements, FE and FD, parallelisable

v

Divide domain into many sub-domains

v

For each sub-domain, identify internal points which only

involve internal variables x and boundary variables y.

v

Solve internal variables x in terms of boundary variables y

v

Solve reduced ‘Schur complement’ for boundary variables y.



Domain decomposition Domain decomposition

Solution of internal problems, parallelisable, small memory each
For Poisson problem Ax = b, and K subdomains, .
internal variables x1, xo, ..., xx boundary variables y xx = A" (bk — Bry).

Internal problems Hence problem for boundary variables

Aixk + Bry = by. g i - -
Boundary problem (D—GA"B1— = CkAy Bk) y = bo— GLAT b1 — = Ck A bic.

If using direct LU inversion

CGx1+ Gxo+ ...+ Ckxkx + Dy = bg.
» Nx N, full domain costs N®

ie. » K subdomains, cost N°/K3 per subdomain + N3K3/2
A1 B X1 by boundary
A2 Bz X2 b2 12 9 .
_ _ _ B _ » e.g. N =100, K =25: full 10*, DD parallel 10° operations
Ak Bk XK bk » NxNxN, full domain costs N°
G &G -+ C D y bo

» K subdomains, cost N°/K3 per subdomain + N°K boundary
» e.g. N =100, K = 27: full 10'8, DD parallel 10! operations

Fast Multipole Method Trees, roots and leaves

For long range interations (potential flow or Stokes flow)
Hierarchy of domains: divide initial square box into 4 equal

squares; divide each sub-square into 4;

Clustering effect of far particles (Barnes-Hut) gives NIn N continue through Ing N levels, so on average only one in smallest.
Some smallest will be empty, some contain more than one.

between N point-particles seems N? problem

Making clusters multipoles + polynomial local effects

(Greengard-Rokhlin) gives N Tree structure: at any level, smaller box within is a ‘child’, larger
box which contains it is the ‘parent’.
Top of tree is ‘root’.
N Once branch contains no particle stop subdivision,
Smallest non-empty box down a branch is a ‘leaf’.
w(z) =) giIn(zi - z), Pty

Here in 2D for

JF#i



Barnes-Hut algorithm

Upward pass from leaves to root, one level at a time
» Sum charges g, to charge of parent g, = ) q..
» Find center of mass of charges z, = > z.qc/ ) qc.
Downward pass for each particle, starting one below root
» If box is far, then contribution from cluster
» If box is not far and not end, go down a level

» If box is not far and end, sum contributions of individual

particles

A box which is not adjacent is far.

Cost in 2D is 27N Ing N, beats N2 if N > 200
Cost in 3D is 189N Ing N, beats N? if N > 2000

Fast Multipoles — downward pass

Local shift of polynomial variation centred on parent z, to centred
on child z.

(z=2)" =) Mz —z) (2c —2)" ",

r=0

where ¢" is a binomial coefficient.

Local expansion about centre of child at z. of multipole at z,

bm
Z _ Zb Z _ Zb m+r

Fast Multipoles — upward pass

Far shifts of point charge at z; to multipoles about center z.

In(z—2z)=In(z—z) + Z (Z;_Z))rr

r=1

Similary shift multipole at z;

bm ZC I
(z— z, ZO (z — zc)m+r’
r=

where b!" is a binomial coefficient.

Upward pass from leaves to root

» Use far shifts to move multipoles of children to centre of
parent

Fast Multipoles - downward pass

Downward pass starting at root-2
» Box inherits from parent via local shift

> Plus local expansion input from 27 newly far boxes with
parent-boxes adjacent to own parent

At lowest level
» Evaluate resulting field at each particle

» Add direct particle-particle from particle within own box and 8
adjacent boxes



Fast Multipoles

Errors from first multipole order not included my .y, in 2D

1 Mpax—+1
Error < [ —=
()

Need M.y = 6 for 1073 accuracy (Mmax = 8 in 3D)
Costs in 2D
8N + %(Mmax + 1)N + 36(Max + 1)>N

So for 1073 accuracy, need N > 10* before faster than N2 direct
particle-particle interactions

Costs in 3D
26N + m?._ N +189m* N

max max

So for 1073 accuracy, need N > 109 before faster than N2 direct
particle-particle interactions



