- \blacktriangleright Multigrid
- \blacktriangleright Fast Fourier Transforms
- \blacktriangleright Domain Decomposition
- \blacktriangleright Fast Multipoles

Multigrid

Here for 2D, Finite Differences, $N \times N$ square, $N = 2^m$.

- ▶ Direct inversion of $N^2 \times N^2$ matrix $\rightarrow \frac{1}{3}N^6$ operations
- ► Gauss-Seidel N^2 iterations \rightarrow N^4 operations
- ▶ Successive-Over-Relaxtion N iterations \rightarrow N^3 operations
- \blacktriangleright Multigrid \rightarrow N^2 operations.

Problem with Gauss-Seidel: slow diffusion across grid of longwave errors, shortwave errors diffuse rapidly Hence tackle longwave errors on a faster coarse grid

Coarsest grid $\Delta x = \frac{1}{2}$, one interior point Finest grid $\Delta x = \frac{1}{2^m}$, $(2^m - 1)^2$ interior points

Multigrid - sequence of problems

Sequence of Poisson problems

 $A_k x_k = b_k$

for grids $k = m$, the finest, to $k = 1$, the coarsest.

Make several V-cycles

Each cycle starts at the finest, descends one level at a time to the coarsest and then ascends back to the finest.

For the first cycle, start iteration with $x_m = 0$. For subsequent cycles, start with x_m from previous V-cycle.

V-cycle, the descent

Starting with $k = m$

- \blacktriangleright Make a couple of Gauss-Seidel iterations of $A_k x_k = b_k$.
- \blacktriangleright Produces x_k^{approx} κ^{approx} . Store for later use
- \blacktriangleright Calculate residue

$$
res_k = b_k - A_k x_k^{\text{approx}}.
$$

 \triangleright Coarsen residue for forcing on the next coarser grid

$$
b_{k-1} = C_k \text{res}_k \text{ where } C_k = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}.
$$

- ► Store b_{k-1} for later use
- ► Zero x_{k-1} for starting iterations
- \triangleright To courser grid: $k \rightarrow k-1$
- If $k > 1$ go to the top of this list

End descent on coursest grid $(k = 1)$ with just one internal point, so $A_1x_1 = b_1$ is one equation in one unknown, solved exactly.

V-cycle, the ascent

Starting with $k = 2$.

► Courser solution x_{k-1} interpolated to finer grid

$$
x_k^{\text{correction}} = I_k x_{k-1} \quad \text{where} \quad I_k = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}.
$$

Add this to stored x_k^{approx} κ^{approx}_{k} from descent

 $x_k^{\text{better approx}} = x_k^{\text{approx}} + x_k^{\text{correction}}$

- \blacktriangleright Make a couple of Gauss-Seidel iterations of $A_k x_k = b_k$ starting from $x_k^{\text{better approx}}$ $\frac{L}{k}$ ^{better approx}, using stored b_k
- \triangleright To finer grid: $k \to k+1$
- If $k < m$ go to top of this list

End ascent with x_m

Multigrid not: first solve coursest Poisson, then interpolate for starting finer. Coarsening residue gives different forcing

Fast Fourier Transforms

See spectral methods for details of making fast transform

Poisson problem trivial in Fourier space. Cost in transforms.

For $N \times N$ problem in 2D, there are N^2 Fourier amplitudes.

- Simple calculation of amplitudes cost N^4 .
- \triangleright Orszag speedup gives N^3 .
- \blacktriangleright Fast Fourier Transform reduces to N^2 In N

For 3D channel flow, FT in 2 periodic directions, FD in 3rd

Multigrid – costs

Solve on 256×256 grid

$$
\nabla^2 \psi = -2\pi^2 \sin(\pi x) \sin(\pi y)
$$

Error reduces by 10 with 2 GS iterations at each level per V-cycle

8 N^2 cost per V-cycle Hence for 10^{-4} accuracy, cost is 32 N^2 cf 2 N^3 by SOR

Domain decompostion

Good for complex geometry, very large problems – reduces memory requirements, FE and FD, parallelisable

- \triangleright Divide domain into many sub-domains
- \triangleright For each sub-domain, identify internal points which only involve internal variables x and boundary variables y .
- \triangleright Solve internal variables x in terms of boundary variables y
- \triangleright Solve reduced 'Schur complement' for boundary variables y.

Invert FD tridiagonal \rightarrow cost N^3 In N

Domain decomposition

For Poisson problem $Ax = b$, and K subdomains, internal variables x_1, x_2, \ldots, x_k boundary variables y

Internal problems

$$
A_k x_k + B_k y = b_k.
$$

Boundary problem

$$
C_1x_1 + C_2x_2 + \ldots + C_Kx_K + Dy = b_0.
$$

i.e.

$$
\begin{pmatrix}\nA_1 & & & & & B_1 \\
 & A_2 & & & & B_2 \\
\vdots & \vdots & \ddots & & \vdots \\
 & & A_K & B_K \\
C_1 & C_2 & \cdots & C_K & D\n\end{pmatrix}\n\begin{pmatrix}\nx_1 \\
x_2 \\
\vdots \\
x_K \\
y\n\end{pmatrix} =\n\begin{pmatrix}\nb_1 \\
b_2 \\
\vdots \\
b_K \\
b_0\n\end{pmatrix}
$$

Fast Multipole Method

For long range interations (potential flow or Stokes flow) between N point-particles seems N^2 problem Clustering effect of far particles (Barnes-Hut) gives N ln N Making clusters multipoles $+$ polynomial local effects

(Greengard-Rokhlin) gives N

Here in 2D for

$$
w(z_i)=\sum_{j\neq i}^N q_j \ln(z_i-z_j),
$$

Domain decomposition

Solution of internal problems, parallelisable, small memory each

$$
x_k = A_k^{-1}(b_k - B_k y).
$$

Hence problem for boundary variables

$$
(D - C_1 A_1^{-1} B_1 - \cdots - C_K A_K^{-1} B_K) y = b_0 - C_1 A_1^{-1} b_1 - \cdots - C_K A_K^{-1} b_K.
$$

If using direct LU inversion

- \blacktriangleright $N \times N$, full domain costs N^6
- \blacktriangleright K subdomains, cost N^6/K^3 per subdomain $\frac{1}{2}N^3K^{3/2}$ boundary
- e.g. $N = 100$, $K = 25$; full 10^{12} . DD parallel 10^9 operations
- \blacktriangleright $N \times N \times N$, full domain costs N^9
- \blacktriangleright K subdomains, cost N^9/K^3 per subdomain $\vdash N^6K$ boundary
- e.g. $N = 100$, $K = 27$: full 10^{18} , DD parallel 10^{14} operations

Trees, roots and leaves

Hierarchy of domains: divide initial square box into 4 equal squares; divide each sub-square into 4; continue through $\ln_4 N$ levels, so on average only one in smallest. Some smallest will be empty, some contain more than one.

Tree structure: at any level, smaller box within is a 'child', larger box which contains it is the 'parent'. Top of tree is 'root'. Once branch contains no particle stop subdivision, Smallest non-empty box down a branch is a 'leaf'.

Barnes-Hut algorithm

Upward pass from leaves to root, one level at a time

- \blacktriangleright Sum charges q_c to charge of parent $q_p = \sum q_c$.
- \blacktriangleright Find center of mass of charges $z_p = \sum z_c\,_0 / \sum q_c$.

Downward pass for each particle, starting one below root

- If box is far, then contribution from cluster
- If box is not far and not end, go down a level
- If box is not far and end, sum contributions of individual particles

A box which is not adjacent is far.

Cost in 2D is 27N ln₄ N, beats N^2 if $N > 200$ Cost in 3D is 189N In₈ N, beats N^2 if $N > 2000$

Fast Multipoles – upward pass

Far shifts of point charge at z_i to multipoles about center z_c

$$
\ln(z-z_i) = \ln(z-z_c) + \sum_{r=1} \frac{(z_c-z_i)^r}{r(z-z_c)^r}.
$$

Similary shift multipole at zi

$$
\frac{1}{(z-z_i)^m}=\sum_{r=0}b_r^m\frac{(z_c-z_i)^r}{(z-z_c)^{m+r}},
$$

where b_r^m is a binomial coefficient.

Upward pass from leaves to root

 \triangleright Use far shifts to move multipoles of children to centre of parent

Fast Multipoles – downward pass

Local shift of polynomial variation centred on parent z_n to centred on child z_c

$$
(z-z_p)^m = \sum_{r=0}^m c_r^m (z-z_c)^r (z_c-z_p)^{m-r},
$$

where c_r^m is a binomial coefficient.

Local expansion about centre of child at z_c of multipole at z_b

$$
\frac{1}{(z-z_b)^m} = \sum_{r=0}^{\infty} b_r^m \frac{(z-z_c)^r}{(z_c-z_b)^{m+r}}.
$$

Fast Multipoles - downward pass

Downward pass starting at root-2

- \triangleright Box inherits from parent via local shift
- \blacktriangleright Plus local expansion input from 27 newly far boxes with parent-boxes adjacent to own parent

At lowest level

- \blacktriangleright Evaluate resulting field at each particle
- \triangleright Add direct particle-particle from particle within own box and 8 adiacent boxes

Fast Multipoles

Errors from first multipole order not included m_{max} , in 2D

$$
\mathrm{Error} \leq \left(\frac{1}{2\sqrt{2}}\right)^{m_{\max}+1}
$$

Need $m_{\text{max}} = 6$ for 10^{-3} accuracy $(m_{\text{max}} = 8$ in 3D)

Costs in 2D

$$
8N + \tfrac{4}{3}(m_{\max} + 1)N + 36(m_{\max} + 1)^2N
$$

So for 10^{-3} accuracy, need ${\cal N} > 10^4$ before faster than ${\cal N}^2$ direct particle-particle interactions

Costs in 3D

$$
26N + m_{\text{max}}^2 N + 189 m_{\text{max}}^4 N
$$

So for 10^{-3} accuracy, need $N>10^6$ before faster than N^2 direct particle-particle interactions