Wavelets

- \triangleright Compress audio signals and images
- \blacktriangleright Reveal structure in turbulence but yet to give econmical algorithm for turbulence
- \blacktriangleright Local Finite Differences
	- good for discontinuities
	- $-$ poor for waves, $8+$ points per cycle
- \blacktriangleright Global Spectral
	- good for waves
	- poor for discontinuities, $\tilde{f} \sim 1/k$ with no wave of period
	- $2\pi/k$ (NB $k^{-5/3}$ spectrum of turbulence)

Wavelets: best of both: local waves

Musical tune: sequence of notes of different amplitude, frequency, duration Fourier not see finite duration, FD need 8+ points per cycle

Musical score very economical \rightarrow wavelets

Continuous Wavelet Transform

Mother wavelet $\psi(x)$: translate through b, dilate by a

$$
\psi_{a,b} = a^{-1/2} \psi\left(\frac{x-b}{a}\right)
$$

Wavelet components

$$
f_{a,b} = \int \psi_{a,b}^*(x) f(x) \, dx
$$

Invert

$$
f(x) = \frac{1}{C_{\psi}} \int f_{a,b} \psi_{a,b} \frac{dadb}{a^2} \quad \text{where } C_{\psi} = \int \frac{|\tilde{\psi}(s)|^2}{|k|} dk
$$

For PDEs: $\frac{\partial}{\partial b} f_{a,b} = \left(\frac{\partial f}{\partial x}\right)_{a,b}$

Possible wavelets

Morlet

$$
(e^{ikx}-e^{-k^2/2})e^{-x^2/2}
$$

Mexican hat (Marr)

$$
\frac{d^2}{dx^2}\left(e^{-x^2/2}\right)=(x^2-1)e^{-x^2/2}
$$

Figure : (a) Morlet wavelet with $k = 6$. (b) Marr Mexican hat wavelet.

Decay rapidly in x annd Fourier k

Discrete Wavelet Transform

For unit interval [0, 1], with periodic extension (on a circle) $N = 2^n$ points, $x_k = k/N$ for $k = 0, 1, \ldots, N - 1$

Restrict to discrete set of translations and dilations

$$
\psi_{i,j}=2^{i/2}\psi(2^i x-j)
$$

for $i=0,\ldots,n-1$ and $j=0,\ldots 2^i-1$

E.g. one wavelet $\psi_{0,0} = \psi(x)$ on [0, 1] Two $\psi_{1,0}=$ √ $\overline{2}\psi(2\mathsf{x})$ on $[0,\frac{1}{2}]$ and $\psi_{1,1}=0$ $\sqrt{2}\psi(2x-1)$ on $[\frac{1}{2},1]$ Down to finest level with 2^{n-1} wavelets on 2^{n-1} subintervals Total number of wavelets $= 1 + 2 + \ldots 2^{n-1} = N$ on N data points

A Multiscale representation

... Discrete Wavelet Transform

Wavelet components (using periodic extension near boundary)

$$
f_{i,j} = \frac{1}{N} \sum_{k} \psi_{i,j}(x_k) f(x_k)
$$

If $\psi(x)$ is nonzero only on unit interval,

then $f_{0,0}$ is sum over N points,

 $f_{1,0}$ and $f_{1,1}$ are each sums over $N/2$ points, etc Hence cost of all components is $O(N \ln_2 N)$

Advantage of special orthogonal wavelets (discrete)

$$
\frac{1}{N}\sum_{k}\psi_{i,j}(x_{k})\psi_{l,m}(x_{k})=\delta_{il}\delta_{jm}
$$

Then inverse discete wavelet transform

$$
f(x_k) = \sum_{i,j} f_{i,j} \psi_{i,j}(x_k)
$$

Possible orthogonal wavelets: Haar, Sinc, Meyer, Battle-Lemarié, Daubechies, symlets, Coiflets

... Fast Wavelet Transform

The 7 components cannot represent 8 data points. Missing mean value, so introduce

$$
f_{0,0}^{\phi} = \frac{1}{8}(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7).
$$

Then inversion works, e.g. (student exercise!)

$$
f_0 = f_{0,0}^{\phi} \phi_{0,0}(0) + f_{0,0} \psi_{0,0}(0) + f_{1,0} \psi_{1,0}(0) + f_{2,0} \psi_{2,0}(0),
$$

with $\phi_{0,0}(0) = \psi_{0,0}(0) = 1$, $\psi_{1,0}(0) = \sqrt{2}$ and $\psi_{2,0}(0) = 2$.

Fast Wavelet Transform $- O(N)$

Start with simple case of Haar wavelet

$$
\psi(x) = \begin{cases} 1 & \text{if } 0 \le x < \frac{1}{2}, \\ -1 & \text{if } \frac{1}{2} \le x < 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Non-zero on single interval, so obviously orthogonal

Consider simple case of $N = 8 = 2³$ points. Wavelet components

$$
f_{0,0} = \frac{1}{8}(f_0 + f_1 + f_2 + f_3 - f_4 - f_5 - f_6 - f_7),
$$

\n
$$
f_{1,0} = \frac{\sqrt{2}}{8}(f_0 + f_1 - f_2 - f_3), \quad f_{1,1} = \frac{\sqrt{2}}{8}(f_4 + f_5 - f_6 - f_7),
$$

\n
$$
f_{2,0} = \frac{1}{4}(f_0 - f_1), \quad f_{2,1} = \frac{1}{4}(f_2 - f_3),
$$

\n
$$
f_{2,2} = \frac{1}{4}(f_4 - f_5), \quad f_{2,3} = \frac{1}{4}(f_6 - f_7).
$$

Problem 1: mean value. Problem 2: duplication

... Fast Wavelet Transform

Need scaling function $\phi(x)$, which for Haar is

$$
\phi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Same dilations and translations of this basic scaling function

$$
\phi_{i,j}(x) = 2^{i/2}\phi(2^ix - j)
$$

for $i=0,\ldots,n-1$ and $j=0,\ldots,2^i-1$ Similar components

$$
f_{i,j}^{\phi} = \frac{1}{N} \sum_{k} \phi_{i,j}(x_k) f(x_k).
$$

... Fast Wavelet Transform

The Fast transform: Start at finest level

$$
f_{2,0} = \frac{1}{4}(f_0 - f_1) \quad f_{2,0}^{\phi} = \frac{1}{4}(f_0 + f_1)
$$

and similarly other $f_{2,j}$ $f_{2,j}^{\phi}$ 2,j Next level up

$$
f_{1,0} = \frac{1}{\sqrt{2}} (f_{2,0}^{\phi} - f_{2,1}^{\phi}) \quad f_{1,0}^{\phi} = \frac{1}{\sqrt{2}} (f_{2,0}^{\phi} + f_{2,1}^{\phi}),
$$

Similarly next and coarsest level

$$
f_{0,0} = \frac{1}{\sqrt{2}} (f_{1,0}^{\phi} - f_{1,1}^{\phi}) \quad f_{0,0}^{\phi} = \frac{1}{\sqrt{2}} (f_{1,0}^{\phi} + f_{1,1}^{\phi}).
$$

Cost: 4N operations

... Fast Wavelet Transform

At any *I*th stage, the partial sum

$$
\sum_{j=0}^{2^l-1} f_{l,j}^\phi \phi_{l,j}(x)
$$

represents all the courser scale variations of the function which have not been described by wavelets at the scale of l and finer, as in

$$
\sum_{j,i\geq l}f_{i,j}\psi_{i,j}(x).
$$

Fast Wavelet Transform is a bank of frequency filters in signal processing

– a high-pass to the wavelet components and a low-pass to the remaining scaling compnents

... Fast Wavelet Transform

The Inverse Transform: have f^{ϕ}_{0} $_{0,0}^{\epsilon\varphi}$ and all wavelets $f_{i,j}$ Start at coarsest level

$$
f_{1,0}^{\phi} = \frac{1}{\sqrt{2}} (f_{0,0}^{\phi} + f_{0,0}) \quad f_{1,1}^{\phi} = \frac{1}{\sqrt{2}} (f_{0,0}^{\phi} - f_{0,0})
$$

Similary generate all $f_{i,j}^\phi$ $\tilde{f}^\varphi_{i,j}$ from coarser level Finally recover the data

$$
f_0 = \frac{1}{2}(f_{2,0}^{\phi} + f_{2,0}) \quad f_1 = \frac{1}{2}(f_{2,0}^{\phi} - f_{2,0})
$$

and similarly all other f_k

NB: The Fast Transform and its Inverse do not use the values of the function, just the filter coefficients $\pm \frac{1}{\sqrt{2}}$ 2 Gives generalisation from Haar to other orthogonal wavelets

Daubechies Wavelets

A scaling function must be a linear combination of finer scale scaling functions. The Daubechies D-2 has just four, so that

$$
\phi(x) = \sqrt{2} \left(h_o \phi(2x) + h_1 \phi(2x - 1) + h_2 \phi(2x - 2) + h_3 \phi(2x - 3) \right)
$$

Constraints of orthogonality, normalisation and some vanishing moments require

$$
h_o = \frac{1+\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3-\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{1-\sqrt{3}}{4\sqrt{2}}
$$

Distinctly irregular Not good for PDEs But just use filter coefficients

The Fast D-2 Wavelet Transform

$$
f_{i,j}^{\phi} = \sum_{k} h_k f_{i+1,2i+k}^{\phi} \quad f_{i,j} = \sum_{k} g_k f_{i+1,2i+k}^{\phi},
$$

where

 $g_0 = -h_3$ $g_1 = h_2$ $g_2 = -h_1$ $g_3 = h_0$

There is good Wavelet Toolbox in MATLAB