Resumé of Part 1 Finite Differences

Higher order derivatives

Solve driven cavity at Re = 10 a. central diszerencing
Physics, maths of PDE With O(Ax?) errors
1 —w and u — v — p formulations: Pressure i = fir1 —fia
Finite Diff ' 20x
|n.| € virrerences f// _ f;'+1 _ 2f; + fi—l
Poisson solver, SOR o Ax?
Time stepping, numerical instability and higher order derivatives
Accuracy, no bugs?, results o =
: : o 2Ax
Part Il — more details on general issues | fup—2f1 +2f 1 —fio
Discretisation — FD, FE, Spectral - 2AX3
Time-stepping — implicit, pressure o _ =2+
Solving large sparse linear equations ' Ax?
_ _ _ firo — 4fip1 +6fi —4fi1 +fio
Part Il — collection of special topics = Axt

even — Pascal A, odd — 2x Pascal with shift

Error analysis by Taylor series b. One-side differencing — used in BC

With O(Ax) error

firn, = f(x=iAx+ Ax) fo = flA_ fo + O(Ax),
X
_ f;'—|—AXf;'/+%AX2f;'N+%AX?’f;‘/”-’—%AX“ﬁ'””"—.-.. . fz—2f1+fo
fb — T + O(AX)7
Then f— 3643 — 1
f;'+1 _ f;'—l — 2AXfil 4 %Ax3f}/// + O(AXS) fi)/// — 3 — 2 + 1— 10 + O(AX)

Ax3

" H
But have £ to second order. Substitute for Error analysis by Taylor series

o —35five + 51 — §fica + ffi2 fi = fo + Dxfy + 30x%f + O(AX°).

4
i Ax + O(Ax™).

Using the first-order expression above for f;’

—1h+2f - 36
Ax

Check expression with f = 1, x, x?, x3, x* — correct 0,1,0,0,0

fo = + 0(AX?).

Similarly,
Similarly

1 4 5 4 1
£ —isfite + 3fit1 — 5fi + 3fi-1 — 5fi2

i AX2 + O(AX4)

—f3+4f2—5f1+2f0+

f‘// —
Ax?

O(Ax?).



c. Non-equispaced points

To find kth derivative f(K)(xo) to O(Ax)
fit polynomial of degree k + / through k + / + 1 points xg + Ax;,

f(Xo + AX,') =ag + a1Ax; + azAX,-2 + ... ak+/AXik+l.
Solve for polynomial coefficients a;, e.g. by MAPLE, then
f(k)(Xo) = k!ak
Central differencing on equispaced points — one degree accuracy

better

Splines better than higher order polynomials — FEM

b. two-dimensional version

Use o o o
2 2e2 77925 ¢ i
Vp—VV¢—8X4+ 8x28y2+8y4'
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Compact 4th order Poisson solver

a. one-dimensional version
H H /o
Fourth-order differencing for ¢/ = p
1 4 5 4 1 — 2
—15Pi+2 + 30i+1 — 36i + 30i-1 — 3Pi—2 = Axpj.
Problems: wide molecule, need special form near boundary

Error in 2nd order version

Giv1 — 20; + ¢i—1
Ax?

= 0 + 5 Ax70]" + O(AX").

Now ¢ = p; and so

L — D) .
d);/// _ P:'/ _ Pi+1 Ai’2+ Pi+1 + O(AX2).

Hence

Gir1 — 20i + di-1
Ax?

= 3pis1+ 3pi + Epic1 + O(AXY).

Test

Analytic solution
p=2m’sinmxsinty and ¢ = —sinmxsinmy.

with N =10, 14, 20, 40 and 56

0.0001

Error decreasing as 0.27Ax%,
i.e N =20 gives 21076 ¢f 21073 for 2nd order.



Crandall 4th order for diffusion equation Upwinding

Advection u - V¢ propagates information in direction u.
Violated by central differencing

Similar trick, with cancellation of At2% with %Ax‘*g%’ errors. u-¢i+1 — i1
' 2Ax
n i - At (un+1 oty u”“) where if u; > 0 downstream ¢;,1 influences ¢;.
i 12 2 Ax2 i+1 i i—1 _ o
) A Correct flow of info by upwinding
t
=ul+ (35 + 55,2 ) (Ul —2uf +uly). b
12 2Ax2 u-7¢' — fic1 if u; >0
ox Piv1— ¢i .
i——— ifu <0,
Ui 7 if u

But only 1st order accurate, O(Ax) errors.

Higher order Other grids
One-sided differencing at O(Ax?) Geometry of problem — polars, other OG coods, non—OG bad idea
%gb,- —2¢i_1+ %¢;_2 , Increased resolution of important small regions
a¢ u; Ax if u >0
Uox = 1 3 stretched grid x(§) and/or y(n)
X u_—§¢i+2 + 2¢it1 — 5¢i <0
' Ax : ’ NB OG. Central differencing on £ and 1 better than
But wide molecule. non-eguispaced _
Can give unnecessary coverage, e.g. away from important corner.
More compact and nearly upwinding @ )
, (0 00 L, (3 00
— -1 1 0|¢+—1 1 0]e. Difficult to match
Ax 111 Ax -1 10 different resolutions
u>0andv >0




but stability

Time-step stability controlled by smallest grid block
Diffusive numerical stability

At < tRe Ax?

Advection stability
At < (Ax/U), -

Restriction acute for polars

AXmin = rinDAOmin - With — rpin = Ar

In infinite domains, bring infinity nearer with stretch such as

3

X:e5 or X=_——.

1-¢

apply to Volume of Fluid on staggered grid

u o, T T

i T
T . =T Xy Ty
1l _ o ityivy it i = T
pult = pu’  — At + .
ij+3 +s3 Ax Ax

When integrate over a large volume, internal momentum fluxes
cancel.

For momentum conservation on whole domain, need e.g. on x =0

Conservative forms

Two ideas
» conservative formulation of governing equation

» apply to a Finite Volume of Fluids (VoF)

Recast Navier-Stokes to

0

— V-T=0
5 (Pu) +

with total momentum flux

T = puu + pl — 2uE

Reynolds stresses, isotropic pressure and viscous stresses

fluxes on staggered grid

Some averaging for inertia terms, but not for pressure and viscous

terms
Uippjpl T U1 Uppgjpl —Ujjq1
T _ J+3 1j+3 + =0 i+1j+3 ij+3
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Use conservative form in non-Cartesian coods

2
18<r28¢>>+18¢

2, L1 0 U9
Ve = r2 or or r2 062

better numerically than theoretically equivalent

2o 200 10%
or2  ror r?206?

20¢ 20¢
<r 8r>i+§ - (r ar),'_l

Discretisation

7& r2% ~ 2
r2 or or rl-zAr
with
rz% 2 1¢i+1_¢i'
or il i+3  Ar

Alternative forms of nonlinear term

u-Vu = V-uu conserves momentum
= V%u2 —uAw rotational form
_ 1 1
= 5u-Vu+35V-.uu conserves energy.

Last called “skew-symmetric” form.
Scalar product with u

(u,-uﬂu{fﬂ WYy u;(tljj:+lllf:+1 _ uj:—lL,{_'—l)) J2Ax,
subscripts for components and superscripts for location.

On summing across domain, cancellations first—fourth,
second—-third

Two-phase flows

Volume-of-Fluid or One-Fluid Method
= conservative scheme with p(x) and u(x)



