Part II continued - more details on general issues

Last time – Finite Differences

Higher orders - central, 1-sided, non-equispaced

Compact 4th order Poisson solver

Upwinding

Grids - non-Cartesian, stretched, staggered

Conservative

This time - Finite Elements

Finite Elements = Two ideas

- 1. Simple representation for unknown function over the finite element
 - not point data of FD
- 2. Weak formulation of the governing equations
 - variational statement

Finite Elements

Good for engineering problems with complex geometries

- 'just' need to triangulate domain

Good for elliptic, OK for parabolic, poor for hyperbolic

Good for accuracy & conservative

Poor difficult programming on unstructured grid

Poor no efficient Poisson solver on unstructured grid

Poor difficult presenting results on unstructured grid

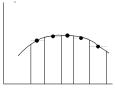
Use packages, do not program yourself

Representations in 1D

a. Constant elements

$$f(x) = f_i$$

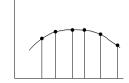
in
$$x_{i-1} \le x < x_i$$



b. Linear elements

$$f(x) = f_{i-1} \frac{x_i - x}{x_i - x_{i-1}} + f_i \frac{x - x_{i-1}}{x_i - x_{i-1}}$$

in
$$x_{i-1} \le x < x_i$$



More representations in 1D

First map element to unit interval

$$x(\xi) = x_{i-1} + (x_i - x_{i-1})\xi$$
 for $0 \le \xi \le 1$

c. Quadratic elements

$$f(x) = f_{i-1}(1-\xi)(1-2\xi) + f_{i-\frac{1}{2}}4\xi(1-\xi) + f_i\xi(2\xi-1)$$

NB: f' discontinuous at boundaries

d. Cubic elements

Obvious generalisation, but better:

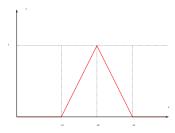
$$f(x) = f_{i-1}(1-\xi)^2(1+2\xi) + f'_{i-1}(1-\xi)^2\xi + f_i\xi^2(3-2\xi) + f'_i\xi^2(1-\xi),$$

Now only f'' discontinuous at boundaries – see splines later

Basis functions for linear elements

$$\phi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}} & \text{in } x_{i-1} \le x \le x_{i} \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}} & \text{in } x_{i} \le x \le x_{i+1} \\ 0 & \text{otherwise,} \end{cases}$$

with obvious modifications for the end elements.



basis functions

In all cases, write:

$$f(x) = \sum f_i \phi_i(x)$$

 f_i amplitudes $\phi_i(x)$ basis functions, nonzero only in a few elements

For the constant elements, the basis functions are

$$\phi_i(x) = \begin{cases} 1 & \text{in } x_{i-1} \le x < x_i \\ 0 & \text{otherwise.} \end{cases}$$

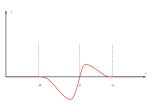


Basis functions for cubic elements

$$\phi_i(x) = \begin{cases} \frac{(x_{i+1} - x)^2 (x_{i+1} + 2x - 3x_i)}{(x_{i+1} - x_i)^3} & \text{in } x_i \le x < x_{i+1} \\ \frac{(x_{i+1} - x_i)^2 (3x_i - 2x - x_{i-1})}{(x_i - x_{i-1})^3} & \text{in } x_{i-1} \le x < x_i \\ 0 & \text{otherwise,} \end{cases}$$

$$\tilde{\phi}_i(x) = \begin{cases} \frac{(x-x_i)(x_{i+1}-x)^2}{(x_{i+1}-x_i)^2} & \text{in} \quad x_i \le x < x_{i+1} \\ \frac{(x-x_i)(x-x_{i-1})^2}{(x_i-x_{i-1})^2} & \text{in} \quad x_{i-1} \le x < x_i \\ 0 & \text{otherwise.} \end{cases}$$





Representations in 2D

Mostly triangles, sometimes rectangles

a. Constant elements

$$f(x) = f_i$$
 in each triangle i.

b. Linear elements Need $\ell_{12}(\mathbf{x})$ vanishing on two vertices, unity on third

$$\ell_{12}(x,y) = \frac{(x-x_1)(y_2-y_1)-(x_2-x_1)(y-y_1)}{(x_3-x_1)(y_2-y_1)-(x_2-x_1)(y_3-y_1)}.$$

Then

$$f(\mathbf{x}) = f_1 \ell_{23}(\mathbf{x}) + f_2 \ell_{31}(\mathbf{x}) + f_3 \ell_{12}(\mathbf{x}).$$

Representation continuous over domain

more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:

1 constant + 2 linear + 3 quadratic + 4 cubic.

Can fit f and ∇f at vertices, plus value in centre = the 'bubble'.

e. Basis functions

In all cases, write:

$$f(x) = \sum f_i \phi_i(x)$$

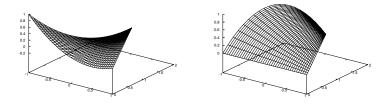
For linear elements, ϕ_i is non-zero at only one vertex, vanishing on opposite sides of triangles, to form a several-sided pyramid.

Local nature \rightarrow sparse coupling matrices for PDEs

more representations in 2D

c. Quadratic elements Values at vertices and mid-points

$$f(\mathbf{x}) = f_1 \ell_{23}(\mathbf{x})(2\ell_{23}(\mathbf{x}) - 1) + f_2 \ell_{31}(\mathbf{x})(2\ell_{31}(\mathbf{x}) - 1) + f_3 \ell_{12}(\mathbf{x})(2\ell_{12}(\mathbf{x}) - 1) + f_{23} 4\ell_{12}(\mathbf{x})\ell_{31}(\mathbf{x}) + f_{31} 4\ell_{23}(\mathbf{x})\ell_{12}(\mathbf{x}) + f_{12} 4\ell_{31}(\mathbf{x})\ell_{23}(\mathbf{x}).$$



more representations in 2D

f. Rectangles

Obvious constant elements

Bilinear, taking values at vertices

$$f(\mathbf{x}) = f_1 \xi \eta + f_2 (1 - \xi) \eta + f_3 \xi (1 - \eta) + f_4 (1 - \xi) (1 - \eta).$$

Continuous over domain.

Biquadratic – sum of 9 terms, each product of quadratic in separate coordinates, taking values at vertices and midpoints.

Continuous and continuous tangential derivative at boundaries.

Variational statement of Poisson problem

 $\nabla^2 f = \rho$ in volume V

with boundary condition, say f = g on surface S, with $\rho(\mathbf{x})$ and $g(\mathbf{x})$ given.

Rayleigh-Ritz variational formulation: out of all those functions $f(\mathbf{x})$ that satisfy BCs, the one that minimises

$$I(f) = \int_V \left(\frac{1}{2} |\nabla f|^2 + \rho f\right) dV$$

also satisfies the Poisson problem.

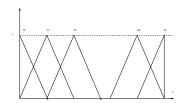
Details in 1D

$$\frac{d^2f}{dx^2} = \rho \quad \text{in } a < x < b, \quad \text{with } f(a) = A \text{ and } f(b) = B,$$

where $\rho(x)$, A and B given.

Divide [a, b] into N equal segments h = (b - a)/N.

Use linear finite elements with basis functions



Unknown f(x) represented (BCs built in)

$$f(x) = A\phi_0(x) + B\phi_N(x) + \sum_{i=1}^{N-1} f_i \phi_i(x)$$

Substitute FE representation

$$f(\mathbf{x}) = \sum f_i \phi_i(\mathbf{x})$$

Then

$$I(f) = \frac{1}{2} \sum_{ij} f_i f_j \underbrace{\int \nabla \phi_i \cdot \nabla \phi_j}_{\text{global stiffness } K_{ij}} + \sum_i f_i \underbrace{\int \rho \phi_i}_{\text{forcing } r_i}$$

Minimise over f_i

$$K_{ij}f_j+r_i=0.$$

With these f_i , the f satisfies

$$-\int \nabla f \cdot \nabla \phi_i = \int \rho \phi_i \quad \text{for all } i,$$

i.e. satisfy PDE in all (finite) ϕ_i directions.

The weak formulation of the PDE (f can be non- C^2)

more details in 1D

At interior pts

$$\mathcal{K}_{ij} = \int
abla \phi_i \cdot
abla \phi_j = \left\{ egin{array}{ll} 2/h & ext{if } i=j, \ -1/h & ext{if } i=j\pm 1, \ 0 & ext{otherwise.} \end{array}
ight.$$

by $\nabla \phi_i = 0, +1/h, -1/h, 0$

Take given $\rho(x)$ to be piecewise constant, then forcing

$$r_i = \int \rho(x)\phi_i = h\rho_i.$$

So equation governing unknown amplitudes f_i becomes

$$\frac{1}{h}(-f_{i-1}+2f_i-f_{i+1})+h\rho_i=0 \quad \text{for } i=1,2,\ldots,N-1,$$

- same for the point values in the finite difference approach.

more details in 1D

Remark If evaluate r_i more accurately

$$r_i = \int \rho(x)\phi_i(x) = \rho_i + \frac{h^3}{12}\rho_i'' + O(h^5).$$

So obtain f_i to $O(h^4)$.

Yet f(x) still only $O(h^2)$ in interior of elements.

Remark For non-equispaced intervals, obtain

$$\frac{1}{h_{i-\frac{1}{2}}}\left(-f_{i-1}+f_{i}\right)+\frac{1}{h_{i+\frac{1}{2}}}\left(f_{i}-f_{i+1}\right)+\frac{h_{i-\frac{1}{2}}+h_{i+\frac{1}{2}}}{2}\rho_{i}=0.$$

i.e. FE approach naturally conservative.