
Part II continued – more details on general issues

Last time – Finite Differences

Higher orders – central, 1-sided, non-equispaced

Compact 4th order Poisson solver

Upwinding

Grids – non-Cartesian, stretched, staggered

Conservative

This time – Finite Elements

Finite Elements

Good for engineering problems with complex geometries

– ‘just’ need to triangulate domain

Good for elliptic, OK for parabolic, poor for hyperbolic

Good for accuracy & conservative

Poor difficult programming on unstructured grid

Poor no efficient Poisson solver on unstructured grid

Poor difficult presenting results on unstructured grid

Use packages, do not program yourself

Finite Elements = Two ideas

1. Simple representation for unknown function over the finite
element

– not point data of FD

2. Weak formulation of the governing equations
– variational statement

Representations in 1D

a. Constant elements

f (x) = fi

in xi−1 ≤ x < xi

(a)

b. Linear elements

f (x) = fi−1
xi − x

xi − xi−1
+ fi

x − xi−1

xi − xi−1

in xi−1 ≤ x < xi

(b)



More representations in 1D

First map element to unit interval

x(ξ) = xi−1 + (xi − xi−1)ξ for 0 ≤ ξ ≤ 1

c. Quadratic elements

f (x) = fi−1(1− ξ)(1− 2ξ) + fi− 1
2
4ξ(1− ξ) + fiξ(2ξ − 1)

NB: f ′ discontinuous at boundaries

d. Cubic elements
Obvious generalisation, but better:

f (x) = fi−1(1− ξ)2(1 + 2ξ) + f ′i−1(1− ξ)2ξ

+fiξ
2(3− 2ξ) + f ′i ξ

2(1− ξ),

Now only f ′′ discontinuous at boundaries – see splines later

basis functions

In all cases, write:
f (x) =

∑
fiφi (x)

fi amplitudes φi (x) basis functions, nonzero only in a few elements

For the constant elements, the basis functions are

φi (x) =

{
1 in xi−1 ≤ x < xi
0 otherwise.
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Basis functions for linear elements

φi (x) =


x − xi−1

xi − xi−1
in xi−1 ≤ x ≤ xi

xi+1 − x

xi+1 − xi
in xi ≤ x ≤ xi+1

0 otherwise,

with obvious modifications for the end elements.
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Basis functions for cubic elements

φi (x) =


(xi+1−x)2(xi+1+2x−3xi )

(xi+1−xi )3 in xi ≤ x < xi+1

(x−xi−1)2(3xi−2x−xi−1)
(xi−xi−1)3 in xi−1 ≤ x < xi

0 otherwise,

φ̃i (x) =


(x−xi )(xi+1−x)2

(xi+1−xi )2 in xi ≤ x < xi+1

(x−xi )(x−xi−1)2

(xi−xi−1)2 in xi−1 ≤ x < xi

0 otherwise.
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Representations in 2D

Mostly triangles, sometimes rectangles

a. Constant elements

f (x) = fi in each triangle i .

b. Linear elements Need `12(x) vanishing on two vertices, unity on
third

`12(x , y) =
(x − x1)(y2 − y1)− (x2 − x1)(y − y1)

(x3 − x1)(y2 − y1)− (x2 − x1)(y3 − y1)
.

Then
f (x) = f1`23(x) + f2`31(x) + f3`12(x).

Representation continuous over domain

more representations in 2D

c. Quadratic elements Values at vertices and mid-points

f (x) = f1`23(x)(2`23(x)− 1)

+f2`31(x)(2`31(x)− 1)

+f3`12(x)(2`12(x)− 1)

+f234`12(x)`31(x) + f314`23(x)`12(x) + f124`31(x)`23(x).
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more representations in 2D

d. Cubic elements

Cubic in 2D has 10 degrees of freedom:
1 constant + 2 linear + 3 quadratic + 4 cubic.

Can fit f and ∇f at vertices, plus value in centre = the ‘bubble’.

e. Basis functions
In all cases, write:

f (x) =
∑

fiφi (x)

For linear elements, φi is non-zero at only one vertex, vanishing on
opposite sides of triangles, to form a several-sided pyramid.

Local nature → sparse coupling matrices for PDEs

more representations in 2D

f. Rectangles
Obvious constant elements

Bilinear, taking values at vertices

f (x) = f1ξη + f2(1− ξ)η + f3ξ(1− η) + f4(1− ξ)(1− η).

Continuous over domain.

Biquadratic – sum of 9 terms, each product of quadratic in
separate coordinates, taking values at vertices and midpoints.

Continuous and continuous tangential derivative at boundaries.



Variational statement of Poisson problem

∇2f = ρ in volume V

with boundary condition, say f = g on surface S ,

with ρ(x) and g(x) given.

Rayleigh-Ritz variational formulation: out of all those functions
f (x) that satisfy BCs, the one that minimises

I (f ) =

∫
V

(
1

2
|∇f |2 + ρf

)
dV

also satisfies the Poisson problem.

Substitute FE representation

f (x) =
∑

fiφi (x)

Then

I (f ) =
1

2

∑
i j

fi fj

∫
∇φi · ∇φj︸ ︷︷ ︸

global stiffness Kij

+
∑
i

fi

∫
ρφi︸ ︷︷ ︸

forcing ri

Minimise over fi
Kij fj + ri = 0.

With these fj , the f satisfies

−
∫
∇f · ∇φi =

∫
ρφi for all i ,

i.e. satisfy PDE in all (finite) φi directions.
The weak formulation of the PDE (f can be non-C 2)

Details in 1D

d2f

dx2
= ρ in a < x < b, with f (a) = A and f (b) = B,

where ρ(x),A and B given.

Divide [a, b] into N equal segments h = (b − a)/N.

Use linear finite elements with basis functions

1
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Unknown f (x) represented (BCs built in)

f (x) = Aφ0(x) + BφN(x) +
N−1∑
i=1

fiφi (x)

more details in 1D

At interior pts

Kij =

∫
∇φi · ∇φj =


2/h if i = j ,
−1/h if i = j ± 1,
0 otherwise.

by ∇φi = 0,+1/h,−1/h, 0
Take given ρ(x) to be piecewise constant, then forcing

ri =

∫
ρ(x)φi = hρi .

So equation governing unknown amplitudes fi becomes

1

h
(−fi−1 + 2fi − fi+1) + hρi = 0 for i = 1, 2, . . . ,N − 1,

– same for the point values in the finite difference approach.



more details in 1D

Remark If evaluate ri more accurately

ri =

∫
ρ(x)φi (x) = ρi +

h3

12
ρ′′i + O(h5).

So obtain fi to O(h4).
Yet f (x) still only O(h2) in interior of elements.

Remark For non-equispaced intervals, obtain

1

hi− 1
2

(−fi−1 + fi ) +
1

hi+ 1
2

(fi − fi+1) +
hi− 1

2
+ hi+ 1

2

2
ρi = 0.

i.e. FE approach naturally conservative.


