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Lagrangian formulation

Field equation, e.g. Klein-Gordon
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with α, β & γ functions of slow X & T ,

has a Lagrangian formlation δL = 0 with
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Euler-Lagrange equation

Derive the field equation as the Euler-Lagrange equation
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More generally,

L = L (φ, φt , φx , φxx ;X ,T ) .

Slowly varying wave

Now substitute a slowly varying wave

φ = a(X ,T ) cos θ, θ =
1

ε
Θ

with

{
local wavenumber k = θx = ΘX

local frequency ω = −θt = −ΘT .

Hence

L = L
(
a cos θ, aω sin θ,−ak sin θ,−ak2 cos θ, . . . ;X ,T

)
,

changing to generalised coordinates a and θ.



Averaging

When evaluating L, first integrate over fast θ
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∫ 2π

0
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and then integrate over slow X ,T
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∫
L dXdT

E.g. KG equation
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2.

Governing equations

Euler-Lagrange equations for variations δa and δθ.

δa :
∂L
∂a

= 0 gives dispersion relation

For KG
αω2 = βk2 + γ.

Equipartition

In general linear waves

L = 1
4a

2F (ω, k)

with Euler-Lagrange equation

δa : dispersion relation F (ω, k) = 0.

But
L = T − V ,

so F = 0 is the equipartition of energy.

Variation of phase δθ

Now θ only occurs in L as slow variables θt = −ω & θx = k.
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which is in conservation form with density ∂L
∂ω and flux ∂L

∂k .

For linear waves L = 1
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Hence conservation of wave action A = ∂L
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