
Mathematical Tripos Part III E.J.Hinch
Slow Viscous Flow February 2008

Example Sheet 1

All flows after Q1 are Stokes flows. The body force f is zero unless stated otherwise.

1. A rigid sphere of radius a oscillates in fluid of kinematic viscosity ν with the
displacement of the centre given by x = A cos ωt. Under what conditions on a, A, ω

and ν can the motion be approximately described by (i) the Stokes equations (ii) the
unsteady Stokes equations?

2. Two identical rigid spheres settle under gravity through an unbounded region of
very viscous fluid. What does reversibility imply about their velocities and angular
velocities?

3. A homogeneous ellipsoid falls under gravity in an unbounded viscous fluid. Show
that it, and any body with three orthogonal planes of symmetry, does not rotate.

4. Verify by direct substitution that the Stokes equations are satisfied by the expres-
sion

u = E·x + ∇(x·Φ) − 2Φ with p = 2µ∇·Φ,

where Φ is a harmonic vector function and E is a constant traceless second-rank tensor.
Show further that if E is symmetric then the stress tensor is given by

σ = 2µ [E− (∇·Φ)I + (∇∇Φ)·x] .

Hence find the velocity and stress fields for a point source of volume flux Q (in
otherwise stationary fluid).

5. Use the Papkovich-Neuber representation of Stokes flow to derive the flow u due
to a couple G acting on a rigid sphere, radius a centred at x = 0, in an unbounded
fluid.

6. Determine the flow outside a rigid sphere rotating with prescribed angular velocity
ω in an applied linear flow, i.e. the flow that has

u = ω∧x on r = a, u → Ω∧x+E · x as r → ∞ with E symmetric & traceless

[Hint: Use linearity to decompose the problem.] If the sphere is now allowed to rotate
freely, what is ω?

7. Find the flow inside and outside a spherical droplet of radius a, viscosity λµ and
density ρ1 translating at fixed velocity V through a fluid of viscosity µ and density
ρ2. [Hints: Guess suitable potentials Φ for the interior and exterior flows and, for the
moment, ignore the jump condition on n·σ·n. V is the velocity of the boundary not
the fluid velocity on the boundary. Make the problem dimensionless.] Show that the
drag on the droplet is

F = −4πµaV
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Hence determine the speed of (i) a solid sphere and (ii) a spherical bubble in a
gravitational field. *What balances the apparent jump in n·σ·n?*



8. For a particle translating through an unbounded viscous fluid, show that the drag
force (that part of the force parallel to its velocity) is higher when the Reynolds number
is not zero compared with the Stokes drag.

9. Newtonian fluid of viscosity µ fills the gap between two long concentric circular
cylinders of radii R1 and R2 (>R1); the inner cylinder is stationary and the outer is
made to rotate steadily with angular velocity Ω. Find the azimuthal velocity profile
uθ(r) in R1 ≤ r ≤ R2. [Hint: Use P–N potentials or note that the couples on any
cylindrical fluid shell balance.] Hence determine the couple (torque) per unit length
applied to the outer cylinder.

Suppose now that a number of rigid force-free couple-free particles are suspended
in the fluid, and the same torque as before is applied to the cylinders. Show that the
rate of rotation is decreased, explaining your argument carefully. [Hint: You will need
to string together a number of results.]

10. A rigid particle moves through a region of very viscous fluid enclosed by a
stationary rigid boundary. Show that the rate of dissipation is given by D = F·U+G·Ω,
where F and G are the total force and couple on the particle, and U and Ω are its
velocity and angular velocity.

Use the reciprocal theorem to deduce the grand resistance matrix in
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is symmetric, i.e. A = A
T , B = C

T and D = D
T .

Now show that for a cube A and D are diagonal, while B and C vanish.

11. An axisymmetric body falls slowly under gravity through viscous incompressible
fluid. The shape is such that the motion is one of pure translation. In one orientation
the velocity V of the body makes an angle θ = θ1 with the symmetry axis, and
an angle α = α1 with the downward vertical; in another the body falls at a different
velocity U , with θ = α = φ, say. Prove that

tan2 φ = 1 − 2 tan θ1 cot(θ1 + α1)

and that

| U |=| V |

[
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.

12. Determine the Faxen formula

Ω = 1

2
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G
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for the rate of rotation of a rigid sphere placed in an arbitrary flow u∞(x) and which
has a couple G applied to it.

13. Apply the reciprocal theorem to the flow u1(x) due to a body force f(x) outside
a force-free sphere and the flow u2(x) due to a force F acting on a sphere in a fluid
with no body force acting on it. Deduce that the force-free sphere moves at a velocity
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[Note: ‘Force-free’ means
∫

σ · n dS = 0 not σ · n = 0!]


