Mathematical Tripos Part IA Dynamics (C8)

Data Sheet

Speed conversion	$1\mathrm{mph}$	=	0.447	${\rm ms}^{-1}$
Mean gravity on Earth	g	=	9.81	ms^{-2}
Gravitational constant	G	=	6.67×10^{-11}	$\rm Nm^2 kg^{-2}$
Mass of Earth	M_E	=	5.97×10^{24}	kg
Mass of Sun	M_O	=	1.99×10^{30}	kg
Mass of Moon		=	7.32×10^{22}	kg
Mean radius of Earth	R_E	=	6.37×10^6	m
Mean distance from Sun to Earth	$1\mathrm{AU}$	=	1.495×10^{11}	m
Mean distance from Moon to Earth		=	3.84×10^8	m
Electrical force constant	$\frac{1}{4\pi\epsilon_0}$	=	8.99×10^9	$\rm Nm^2 C^{-2}$
Electron charge	e	=	1.60×10^{-19}	\mathbf{C}
Mass of electron	m_e	=	9.11×10^{-31}	kg
Atomic mass unit	$1\mathrm{amu}$	=	1.66×10^{-27}	kg
Velocity of light	c	=	2.998×10^8	ms^{-1}
Planck constant	\hbar	=	1.05×10^{-34}	Js
Electron-volt	$1\mathrm{ev}$	=	1.60×10^{-19}	J
Calorie	$1\mathrm{Cal}$	=	4.2×10^3	J

Air drag on a sphere of radius a m moving at velocity $v \text{ ms}^{-1}$ is

 $0.87a^2v^2 + 3.1 \times 10^{-4}av$ N.

Problems with numerical data

The mathematical way of tackle problems with numerical data is to first solve the abstract problem with symbols, and to substitute the values of the numerical data only into the expression for the final answer.

Please notify all errors to E.J.Hinch@damtp.cam.ac.uk.