Preliminary

- ► Traditionally, the subject of *Viscoelasticity* was all about measuring the *rheological properties* and the phenomenological theory of *Constitutive Equations*.
- ► This course will look more to the *dynamics of the flows*. In particular it will be interested in *Why* (a qualative understanding) and *How Much* (a quantatitive understanding).
- ► The word *Rheology* was coined by Bingham in 1922 at Lafayette, with the assistance of a classics colleague.
- ► Two books
 - ▶ D.V. Boger & K. Walters, *Rheological Phenomena in Focus* (1993 Elsevier). NB: a picture book.
 - R.B. Bird, R.C. Armstrong & O. Hassager, *Dynamics of Polymeric Liquids, Vol. 1 Fluid Dynamics* (2nd edition, 1987, Wiley). NB 2nd edition much better than 1st. Vol 2 is dangerous. NB: uses the pressure tensor = −σ

More than: Viscous + Elastic

► Viscous:

Bernoulli, lift, added mass, waves, boundary layers, stability, turbulence

- ► Elastic: structures, FE, waves, crack, composites
- Visco-elastic is more
 Not halfway between Viscous & Elastic strange flows to explain

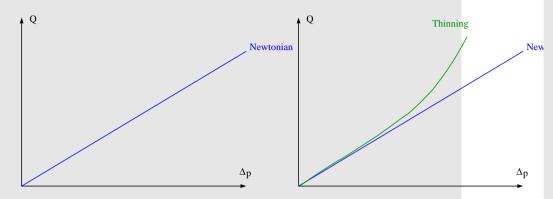
Complex fluids

- ▶ What & where? tooth paste, soup, ketchup, synthetic fibres, plastic bags, anti-splat ink-jet printing, oil well drilling muds, DIY paints
- ▶ Why & when? micron microstructure: nano reacts in 10^{-9} s, time \propto volume, so micron in 1s

Lecture 1

Phenomena

Nonlinear flow

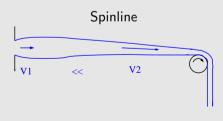

Inhibition of stretching

Elastic effects

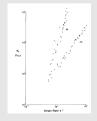
Normal stress

Nonlinear flow

Flow down a pipe: flux Q, pressure drop Δp – just $\mu(\dot{\gamma})$


Thinning – more flow/less effort.

Breakdown of structure Thickenning – less flow/more effort.


Chaos & jamming Yield fluid – toothpaste, ketchup, non-drip paints,

particle transport Also 2D channel flow, as in injection molding, coatings

Inhibition of stretching

Extensional viscosity

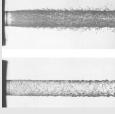
Large values compared to shear viscosity

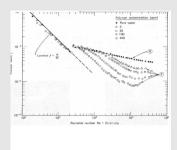
Nonlinear flow – summary

- ▶ Newtonian linear flow.
- ► Thinning more flow/less effort. Breakdown of structure
- ► Thickenning less flow/more effort. Chaos & jamming
- ➤ Yield fluid toothpaste, ketchup, non-drip paints, particle transport

Also possible effects $\mu(p)$, and $\mu(T)$ with internal heating.

Inhibition of stretching


Pointed bubbles


Smooth jets

Inhibition of stretching 2

Reduction of turbulent drag

Application: 48km pipeline, flow 1.8m/s, 50% drag reduction by

9ppm of polymer

Application: Bristol Sewers, aircraft fuel

Inhibition of stretching 4

Capillary squeezing of a liquid filament very slow to break

Inhibition of stretching 3

Long upstream vortices

Uncontrolled output

Inhibition of stretching 5

Drop-on-Demand Inkjet printing with too much polymer in ink

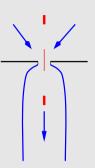
Elastic effects

Recoil

- also thick soup

Elastic effects 3

Die swell with 'sharkskin'



May be a stick-slip effect?

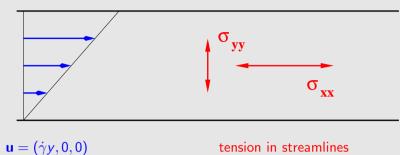
Elastic effects 2

Die swell

- recoil of fluid stretched in converging into hole

Elastic effects 3

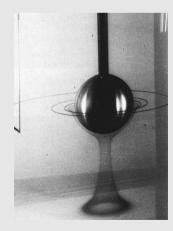
Open syphon


Find videos on web.

Normal stress

Simple shear flow

Normal stresses


tension in streamlines

Sort of elastic stresses in shear flow

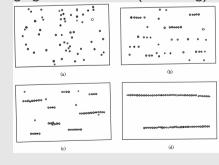
Normal stress 3

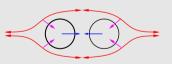
Secondary circulation for rotating sphere.

Same hoop stress effect.

Elastic effects always in opposite direction to inertial effects.

Normal stress 2

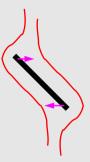

Rod climbing - Newtonian centrifuged out!



Fluid squeezed in by hoop stresses.

Normal stress 4

Agregation in time in (oscillating) shear.



tension in streamlines hoopstress effect migration

Normal stress 5

Sedimenting rods become vertical in an elastic liquid

But become horizontal due to inertial effects

Summary

Phenomena

Nonlinear flow Inhibition of stretching Elastic effects Normal stress

No lecture Tuesday 25 January.

Next lecture Thursday 29 January.

Student Exercises: Find

- ► Open syphon video
- ▶ D.V. Boger & K. Walters, *Rheological Phenomena in Focus* (1993 Elsevier). NB: a picture book.
- R.B. Bird, R.C. Armstrong & O. Hassager, Dynamics of Polymeric Liquids, Vol. 1 Fluid Dynamics (2nd edition, 1987, Wiley). NB 2nd edition much better than 1st. Vol 2 is dangerous. NB: uses the pressure tensor = −σ

Normal stress 6

Migrate of particles to the centre line of pipe

shear rate	tension in streamlines	particle motion
high	high	<u> </u>
low	low	V
high	high	$\stackrel{\wedge}{\bigcirc}$

Gradient in tension in streamline. Hoop stress force