Lecture 2

Rheometry

Simple shear devices

Steady shear viscosity

Normal stresses

Oscillating shear

Extensional viscosity

Scalings

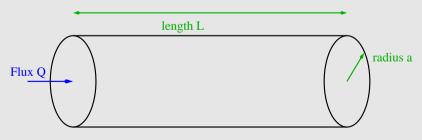
Nondimensional parameter

Simple shear devices 2

Viscometric flows: one layer of fluid slides over another

Need $\nabla(u^2)$ orthogonal to \mathbf{u} , i.e. $\mathbf{u} \cdot \nabla \mathbf{u} \cdot \mathbf{u} = 0$

Capillary tube – use for low μ and for high $\dot{\gamma}$



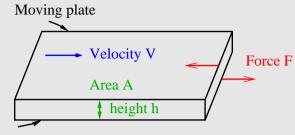
Pressure drop Δp

$$\mu = \frac{\pi a^4 \Delta p}{8QL}$$

Student Exercise

Simple shear devices

Conceptual device for simple shear



Fixed plate

Shear rate
$$\dot{\gamma} = \frac{V}{h}$$

Tangential shear stress $\sigma_{xy} = \frac{F}{A}$

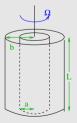
Shear viscosity $\mu = \frac{\sigma_{xy}}{\dot{\gamma}} = \frac{Fh}{AV}$

- works for heavy tars

Simple shear devices 3

Couette experiments in Paris for viscosity of gases, device found in Loire garage.

Unstable if rotate inner too fast.



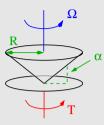
Inner rotating at angular velocity Ω . Torque T.

$$\mu = \frac{T(b^2 - a^2)}{4\pi\Omega a^2 b^2 L}$$

Student Exercise

Simple shear devices 4

Cone-and-plate. Typically angle $\alpha = 2^{\circ}$.



Has shear rate independent of position – useful if $\mu(\dot{\gamma})$.

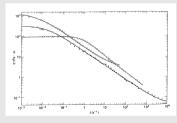
Angular velocity of top cone Ω . Torque (on lower plate) T.

$$\mu = \frac{3T\alpha}{2\pi\Omega R^3}$$

Student Exercise

Steady shear viscosity 2

Two polymer solutions and an aluminium soap solution



Decades of power-law shear-thinning

Steady shear viscosity

- $\blacktriangleright \mu \text{ in Pas}$
 - ▶ air 10⁻⁵
 - water 10^{-3}
 - ▶ golden syrup 10^2
 - ▶ molten polymer $10^{3 \rightarrow 5}$
 - ▶ molten glass $10^{12 o 15}$
- $ightharpoonup \dot{\gamma} ext{ in s}^{-1}$
 - \triangleright sedimenting fines 10^{-5} ,
 - chewing food 10,
 - ightharpoonup mixing 10^2 ,
 - painting 10³,
 - ▶ lubrication $10^{3 \rightarrow 7}$.

Typically has range of power-law shear-thinning

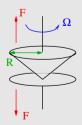
$$\mu(\dot{\gamma}) = k \dot{\gamma}^{\mathsf{n}-1}$$

n: 0.6 molten polymer, 0.3 toothpaste, 0.1 grease.

Normal stresses

$$\mathbf{u} = (\dot{\gamma}y, 0, 0) \qquad \begin{cases} N_1 = \sigma_{xx} - \sigma_{yy} \\ N_2 = \sigma_{zz} - \sigma_{yy} \end{cases}$$

Stress differences to eliminate incompressibility's isotropic pressure First normal stress difference from axial thrust on plate F.



Axial thrust on plate F.

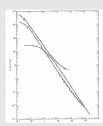
$$N_1 = \frac{2F}{\pi R^2}$$

Student Exercise

Normal stresses 2

Plot $\Psi_1 = N_1/\dot{\gamma}^2$, as $\propto \dot{\gamma}^2$ at low $\dot{\gamma}$ (indpt sign/direction).

Two polymer solutions and an aluminium soap solution



Decades of power-law behaviour.

At low $\dot{\gamma}$, $N \ll \sigma_{xy}$, but at high can be $100 \times$.

Oscillating shear

Shear:

$$\gamma = \gamma_0 e^{i\omega t}$$
 (real part understood)

Small amplitude: $\gamma_0 < 0.1$.

Stress σ in terms of a

complex elastic modulus G^* or complex (dynamic) viscosity μ^* :

$$\sigma = \mathbf{G}^* \gamma = \mu^* \dot{\gamma} = \mu^* i \omega \gamma$$

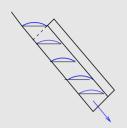
Storage modulus G' and loss modulus G''.

$$G^* = G' + iG''$$

Normal stresses 3

 N_2 normally small and negative.

- Pressure variation over disk
- ightharpoonup Axial thrusts from plate-plate if know N_1
- ▶ Rod climbing if know N_1 .
- ▶ Bowing of free surface in Tanner's tilted trough



Oscillating shear 2

Oscillating because wider range of frequencies, 10^{-3} to $10^5\,\mathrm{s^{-1}}$, than steady shear rates.

Low ω : viscous response

$$\mu' = G''/\omega \to {\rm const}$$
, G' smaller.

High ω : elastic response

$$G' = \mu'' \omega \to \text{const}$$
, G'' smaller.

Power law behaviour at intermediate ω – probes small scale structure.

Oscillating shear 3

Other unsteady shear flows in modern computer controlled rheometers.

- ► Switch on stress, measure transient creep
- ► Switch off stress, measure transient recoil
- ► Switch on flow, measure build up of stress
- ► Switch off flow, measure relaxation of stress

Student Exercise: Connection between these and $G^*(\omega)$?

Extensional viscosity

Uni-axial (axisymmetric) pure straining motion

$$\mathbf{u} = \dot{\epsilon}(x, -\frac{1}{2}y, -\frac{1}{2}z)$$

Calculate an extensional viscosity

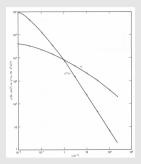
$$\mu_{\rm ext} = \frac{\sigma_{xx} - \frac{1}{2}\sigma_{yy} - \frac{1}{2}\sigma_{zz}}{3\dot{\epsilon}}$$

Without 3 have confusing Trouton Viscosity.

Cannot be steady in time and constant in space, so devices are not perfect.

Oscillating shear 4

Dynamic viscosity $\mu^* = \mu' - i\mu''$



Polyethylene melt (IUPAC Sample A)

At low ω , μ' tends to a constant, and μ'' is smaller by a factor of ω

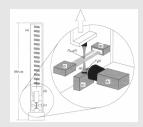
Extensional viscosity 2

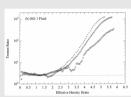
Spinline

Measure tension T & area A(x) gives stress $\sigma_{xx}(x) = T/A$. Velocity change & length gives strain-rate $\dot{\epsilon} = (v_2 - v_1)/L$.

Extensional viscosity 3

Filament stretching - Cogswell, Meissner, Sridhar





BG-1 Boger fluid: $\dot{\epsilon}=1.0$, 3.0 and 5.0.

Extensional viscosity 5

More devices - uniaxial

- ▶ Moscow capillary squeezing cheap, uncontrolled strain rate
- ▶ Four-roll mill: good \mathbf{u} , how to measure σ ?
- ▶ Opposed jets: less good \mathbf{u} , can measure Δp .

Biaxial extensions

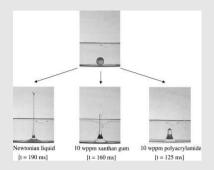
- ▶ Film blowing: have Δp , measure r(t).
- ► Meissner film stretch with 8 tractors

Other

- ▶ Sphere in a tube common for Newtonian
- ► Squeeze film
- ► Sag of heap of cement

Extensional viscosity 4

Solid sphere hits free surface producing a Worthington jet

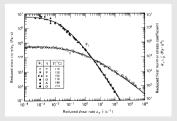


Needs theory to interpret splash height.

Temperature scaling

Plot reduced viscosity μ_r as function of reduced shear-rate $\dot{\gamma}_r$

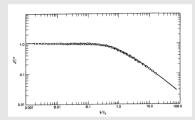
$$\mu_r = \mu(\dot{\gamma}, T) \frac{\mu(0, T_*)}{\mu(0, T)}, \qquad \dot{\gamma}_r = \dot{\gamma} \frac{\mu(0, T)}{\mu(0, T_*)} \frac{T_* \rho_*}{T \rho}$$



Low density polyethylene melt, reference temp 423K $\mu(0,T)$ has activation energy around 4000°K

Concentration scaling

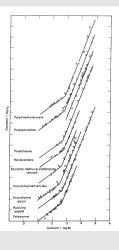
Plot *intrinsic viscosity* = $\mu(c, \gamma/\gamma_0)/\mu(0, 0)$



Molecular weight scaling

At low molecular weight M, $\mu \propto M^1$

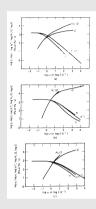
At high molecular weight M, $\mu \propto M^{3.4}$



Cox-Merz 'rule'

'Ad hoc' approximation linking steady and oscillating response, based on oscillation seen if rotate with vorticity in a steady shear.

$$\mu_{
m steady}(\dot{\gamma}) pprox |\mu_{
m osc}(\omega = \dot{\gamma})|, \qquad \mathit{N}_1(\dot{\gamma}) pprox 2\mathit{G}'(\omega = \dot{\gamma})$$



Solutions of polystyrene in 1-chloronaphalene

Nondimensional parameter

Materials have a time constant au

- $\mu_{\rm steady}(\dot{\gamma})$ plateau ends at $\dot{\gamma}=1/ au$,
- $\mu_{\rm osc}(\omega)$ plateau ends at $\omega=1/\tau$

Strength of shear rate

Weissenberg
$$Wi = \dot{\gamma}_{\tau}$$

Speed of change

Deborah
$$De = \frac{U\tau}{I}$$

 $\textit{De} \ll 1$ – fully relaxed, liquid-like behaviour, viscosity

 $De \gg 1$ – little relaxed, solid-like behaviour, elasticity