
Conservation equations – true all materials

Conservation of momentum (Cauchy):

ρ
Du

Dt
= ∇ · σ + ρg

I Often inertia (LHS) is negligible.

I Usually incompressible (plus conservation of mass):

∇ · u = 0

so add pressure to stress, often omitted below.

I Need Constitutive (material dependent) Relation between
stress σ and flow u.

Chapter 3

Constitutive equations

Phenomenology

‘Simple’ materials

Perfectly elastic material

Time derivatives

Exact approximations

Linear viscoelasticity

Second-order fluid

Semi-empirical models

Generalised Newtonian

Oldroyd-B

K-BKZ

‘Simple’ materials

Lagrangian description
X→ x(X, t)

Deformation of line element (for micro-lengths � macro-lengths)

δX→ δx = A · δX, AiJ =
∂xi
∂XJ

A has rotation and stretch, see later.
Local and casual dependency

σ(t) = σ {A(τ)}τ≤t

This functional dependence not useful, except for fast elastic limit
and slow viscous limits (each with single parameter)

Material Frame Indifference

‘Tensorial correct’ or result independent of observer,
so same stresses if add translation and rotation

x′ = a(t) + Q(t)x

so in new frame

σ′ = σ
{
Q(τ)A(τ)QT (0)

}
τ≤t
≡ Q(t)σ {A(τ)}τ≤t Q

T (t).

Require σ {A} to obey this identity for all Q(t).



Perfectly elastic material

Instantaneous, no history.
Decompose deformation A into first a stretch U followed by a
rotation R,

A = RU, with RTR = I , by finding A: U2 = ATA.

The set Q = RT in Material Frame Indifference

σ {A} = R(t)f (U(t))RT

In incompressible material with isotropic in rest state,

f (U2) = U2f1 + U−2f2, fi scalar functions of invariants of U,

so
σ = AAT f1 + A−1TA−1f2
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Alternatively for incompressible with isotropic in rest state,
use an elastic potential energy w ,
a function of eigenvalues λi of U in invariant combinations

α = 1
2

(
λ21 + λ22 + λ23

)
, β = 1

2

(
λ−21 + λ−22 + λ−23

)
, γ = λ1λ2λ3 ≡ 1

Virtual work and σ co-diagonal with U gives

σ1 =
1

λ2λ3

(
∂w

∂λ1
= λ1

∂w

∂α
− λ−31

∂w

∂β

)
,

so

σ =
1

γ

∂w

∂α
AAT − 1

γ

∂w

∂β
A−1TA−1.

Better for data fitting – Ogden model: w(λn1 + λn2 + λn3)

Time derivatives

To express history dependence will use time derivatives and
integrals.
But problem : In new frame

σ′ = QσQT

so its time derivative

σ̇′ = Qσ̇QT + Q̇σQT + QσQ̇T

is different in different frames.

Now flow transforms

u′ = Qu + Q̇x + ȧ

so velocity gradients transform

∂u′

∂x ′
= Q

∂u

∂x
QT + Q̇QT

(
watch indices, ≡ ∇uT

)
so

strain-rate E ′ = QEQT , vorticity (tensor) Ω′ = QΩQT − Q̇QT

Co-rotational (Jaumann) time derivative

Hence co-rotational (Jaumann) time derivative

◦
σ ≡ Dσ

Dt
− ΩT · σ − σ · Ω

has transformation

◦′

σ′ = Q
◦
σQT Student Exercise

This is the rate of change of σ seen by an observer rotating with
the vorticity, and so is universal.

Recall rotation frames
◦
x = ẋ + Ωx



Co-deformational time derivative

Can add multiple of Eσ + σE to co-rotational derivative.
Hence (upper) co-deformational (Oldroyd-B) derivative

O
σ ≡ Dσ

Dt
−∇uT · σ − σ · ∇u

has transformation

O′

σ′ = Q
O
σQT Student Exercise

Recall stretching material line element

δ̇` = δ` · ∇u

so for second-order tensor

˙δ`δ` = ∇uT · δ`δ`+ δ`δ` · ∇u

Linear viscoelasticity

The most general linear response for all materials isotropic in rest
state.

Linearise in low stretch: ATA ≈ I

σ(t) = R(t)

∫ ∞
0

G (s)
˙

ATA(t − s) ds RT (t)

The R(t) . . .RT (t) is a co-rotational integral, but usually dropped
in linearisation.

Memory kernel G (s) is the Fourier transform of G ∗(ω) of
oscillating shear flow.

For a Newtonian viscous fluid G (s) = δ(s) and for an elastic solid
G (s) = 1.
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Student Exercise: If G (t) has a single exponential decay,

G (t) = G0e
−t/τ

show that a polar plot of Re(G ∗) versus Im(G ∗) as (real) ω varies
is part of a circle.
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Scalar form for simple shear flow

σ(t) =

∫ ∞
0

G (s)γ̇(t − s) ds

Hence steady shear viscosity (plug in γ̇ = const)

µ(0) =

∫ ∞
0

G (s) ds

Hence recoil after stop steady shear flow γ̇0

−γ̇0
∫∞
0 sG (s) ds∫∞
0 G (s) ds

Student Exercise



Second-order fluid

For weak and slowly varying flows, the first nonlinear correction

σ = −pI + 2µE − 2α
O
E + βE · E

where

µ =

∫ ∞
0

G (s) ds, α =

∫ ∞
0

sG (s) ds

from ‘retarded motion’ expansion.

Hence Cox-Mertz is correct in the limit γ̇ → 0, ω → 0.

Good for dithering Stokes flow, where accumulation of small
effects over a long time can produce a significant change.

Dangerous in stability analyses and numerical studies, where bad
behaviour can occur outside limitation of weak and slowly varying.
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Student Exercises

In simple shear

I constant viscosity µ

I Normal stress difference N1 = 2αγ̇2, N2 = −1
4βγ̇

2

In (axisymmetric pure) extensional flow

I µext = µ+
(
α + 1

4β
)
ε̇

I but must keep last term small

Generalised Newtonian

Newtonian viscous fluid, except viscosity depends on shear-rate γ̇,

σ = −pI + 2µ(γ̇)E where γ̇ =
√

2E : E .

Depends on instantaneous flow, i.e. no elastic part and no history.
‘Ad hoc’ models to fit experimental data

I Power-law
µ = k γ̇n−1, i.e. stress σ ∝ γ̇n

I Carreau, Yasuda & Cross

µ = µ∞ + (µ0 − µ∞) (1 + (τ γ̇)a)(n−1)/a

with plateaus at high and low γ̇.

Generalised Newtonian

More ‘ad hoc’ models.
Yield fluids which only flow if σ exceeds a yield value σY .

I Bingham

σ =

{
∞, so E = 0 if σ < σY

µ0 + σY /γ̇ if σ > σY

I Herchel-Buckley

σ =

{
∞, so E = 0 if σ < σY

µ0γ̇
n−1 + σY /γ̇ if σ > σY



Oldroyd-B model fluid

History dependence through time differentials.
Easier for computing than with time integrals

σ + λ1
O
σ = 2µ0

(
E + λ2

O
E

)
with 0 ≤ λ2 ≤ λ1.

Three constants

I a viscosity µ0,

I a relaxation time λ1 and

I a retardation time λ2.

Special cases

I Maxwell UCM λ2 = 0

I Newtonian λ1 = λ2
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Student Exercises

In simple shear

I constant viscosity µ = µ0

I Normal stress difference N1 = 2µ0(λ1 − λ2)γ̇2, N2 = 0

In (axisymmetric pure) extensional flow

I

µext = µ0
1− λ2ε̇− 2λ1λ2ε̇

2

(1− 2λ1ε̇)(1 + λ1ε)

I becomes negative just above ε̇ = 1/2λ1!!!!!

Variants of Oldroyd-B

I White-Metzner to incorporate shear-thinning µ(γ̇)

σ +
µ(γ̇)

G

O
σ = 2µ(γ̇)E

I Giesekus for positive extensional viscosity

σ +
αλ1
µ0

σ2 + λ1
O
σ = 2µ0E

I PTT-exponential Phan-Thien & Tanner

σ +

[
exp

(
λ1
µ0

trace σ

)
− 1]

]
σ + λ1

O
σ = 2µ0E

I Multi-mode versions of above

Molecular reformulation of Oldroyd-B
also for better numerics

Microstructure A:
O
A +

f

τ
(A− I ) = 0

Stress σ:
σ = −pI + 2µ0E + Gf (A− I )

Oldroyd-B f = 1

FENE modification, for nice behaviour in extensional flow

f =
L2

L2 − trace A



K-BKZ model fluid
Kay-Bernstein-Kearsley-Zappa

History dependence through time integrals
Merging of linear viscoelasticity and nonlinear elasticity

σ =

∫ ∞
0

Ġ (s)

[
∂w

∂α

(
ÃÃT − I

)
− ∂w

∂β

(
Ã−1T Ã−1 − I

)]
ds

where the relative deformation from s to t is

Ã = A(t)A−1(t − s)

∂w
∂α and ∂w

∂β are usually replaced by φ1 and φ2 ‘damping functions,
not derivatives of some w ,
functions of combinations α and β eigenvalues of Ã.
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Student Exercises

In simple shear

µ =

∫ ∞
0

Ġ (s) (φ1 + φ2) s ds

N1 =

∫ ∞
0

Ġ (s) (φ1 + φ2) s2 ds, N2 = −
∫ ∞
0

Ġ (s)φ2s
2 ds,

In extensional flow

µext =

∫ ∞
0

Ġ (s)
[
φ1
(
e2ε̇s − e−ε̇s

)
+ φ2

(
e ε̇s − e−2ε̇s

)]
s ds/ε̇
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Wagner model
φ2 = 0 so N2 = 0

and
φ1 = exp

(
−k
√
α− 3 + θ(β − α)

)
In shear shear

φ1 = exp (−k γ̇(t − s))
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