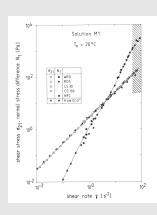
Chapter 5

Experiments

Materials

Observations


Practical problems

Standard Materials – M1

ii. The M1 fluid T.Sridhar (1990) JNNFM 35

0.244% polyisobutylene ($M=3.8\,10^6$) in polybutene $+\,7\%$ kerosene

Cold solution easier to handle than hot melts

Steady shear

Laun & Hingham (1990) JNNFM 35

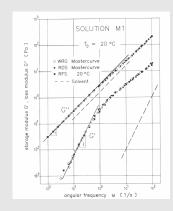
Boger fluid: $\mu(\dot{\gamma}) \approx {
m const}, \ N_1 \propto \dot{\gamma}^2$

Materials

Shear characterisation $\mu(\dot{\gamma})$, $N(\dot{\gamma})$, $G(\omega)$ no help with extensional behaviour.

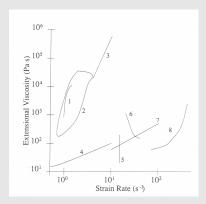
What is a complete rheological description? Use complex flows?

Must document many details of preparation, e.g. molecular weight distribution, for others to reproduce results.


Standard materials

i. IUPAC-LDPE - J.Meissner 1975 Pure & Applied Chemistry

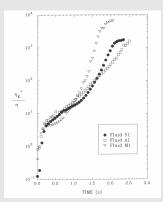
Standard Materials 2 - M1 continued


Oscillating shear

Laun & Hingham (1990) JNNFM 35

Standard Materials 3 - M1 continued

Extensional viscosity

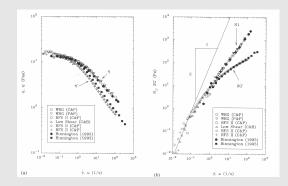


M1 data collected by Keiller (1992) JNNFM 42

Confusion, but very large stresses

Standard Materials 5 - S1 continued

Extension of S1, A1 & M1 Ooi & Sridhar (1994) JNNFM 52


as function of time

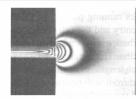
Standard Materials 4 - S1

iii. The S1 fluid N.Hudson (1994) JNNFM 52

5% polyisobutylene in decalin

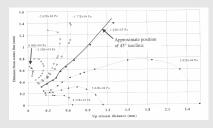
Shear Ooi & Sridhar (1994) JNNFM 52

Shear-thinning


Observations

- ▶ Visualisation, LVA, PIV, volume flow, NMR
- ► Forces and couples
- ▶ ∆p
 - but large entry loss
 - ▶ hole errors in pressure taps from N_1
- ► Birefringence: assume stress-optical law

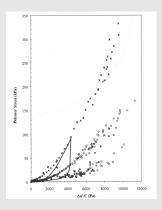
$$\sigma = C\Delta n$$


Birefringence

Observed birefringence Martyn, Nakason & Coates (2000) JNNFM 91

(b) slit wall shear rate = 255 s

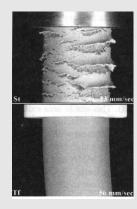
deduced stress contours

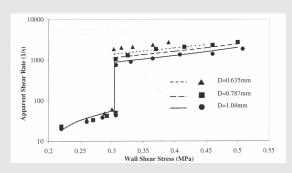


Practical problems

- ► Flow instabilities → apparent jumps in rheology
- ▶ Wall slip pastes and polymer melts
- ► Shear-banding
- ▶ Viscous heating with $\mu(T, p, \dot{\gamma})$
- ► Phase separation/crystallisation
- ▶ Degradation light, UV, bio, mechanical

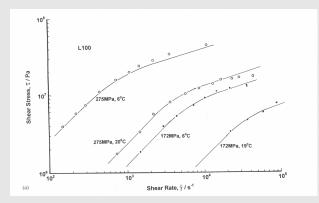
Birefringence 2


Start up of extensional flow at different strain-rates


Sridhar (2000) JNNFM 90

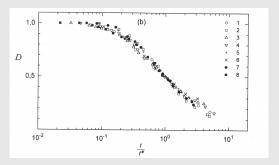
Failure of stress-optical law

Practical problems - wall slip



Kulikov (2001) JNNFM 98

Joshi (2000) JNNFM 94


Practical problems – $\mu(T, p, \dot{\gamma})$

Blair (2001) JNNFM

Practical problems – mechanical degradation

Drag reduction decrease in time

Kalashnikov (2002) JNNFM 103

Theory: residence time in wall layer $t_*(Q, d, L, c, \mu_0)$.