No lecture Thursday 17 February 2011

Next lecture Tuesday 22 February

Discretisation

\blacktriangleright Finite Elements

- \blacktriangleright \blacktriangleright \blacktriangleright good for complex geometry
- \triangleright [need](#page-0-0) good elliptic solver on unstructured grid
- \triangleright commercial code : POLYFLOW
- \blacktriangleright [Spectral](#page-1-0)
	- \blacktriangleright very accurate
	- \triangleright [only for p](#page-2-0)eriodic geometry
		- wavy-wall tube, turbulent drag reduction
- \blacktriangleright [Finite differenc](#page-2-0)es
	- \blacktriangleright [simple, so g](#page-2-0)ood for understanding underlying difficulties
	- \rightarrow \rightarrow \rightarrow only for simple geometry (but mappable)

Chapter 6

Numerics

Discretisation Finite Elements Spectral Finite Differences

Pressure Fractional time-step FE pressure problems Elliptic and hyperbolic

Elliptic part Hyperbolic

Bench marks

Numerical problems

Finite Elements

- \triangleright Divide domain into elements triangles, quadrilaterals
- \triangleright Represent unknowns by simple functions over elements

$$
\mathbf{u}(\mathbf{x}) = \sum^{N} \mathbf{f}_i \phi_i(\mathbf{x})
$$

E.G. for a triangle (x_1, x_2, x_3) , $\phi_1(\mathbf{x}) = 1$ at vertex $\mathbf{x} = \mathbf{x}_1$ and vanishing at \mathbf{x}_2 and \mathbf{x}_3

$$
\phi_1(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_2) \times (\mathbf{x}_3 - \mathbf{x}_2) \cdot \hat{\mathbf{z}}}{(\mathbf{x}_1 - \mathbf{x}_2) \times (\mathbf{x}_3 - \mathbf{x}_2) \cdot \hat{\mathbf{z}}}
$$

Finite Elements 2

 \triangleright Substitute into momentum/mass/stress equation and project (Galerkin)

$$
\int \left(\rho \frac{Du}{Dt} - \nabla \cdot \sigma \right) \cdot \phi_s(\mathbf{x}) dV = 0, \quad s = 1, 2, .., N
$$

 \blacktriangleright Typical finite elements have less pressure modes than velocity, and sometimes more stress than velocity

Spectral

▶ Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$
f(x) = \sum^{N} f_n e^{inx}
$$

- \triangleright Possible problems with boundary conditions.
- \blacktriangleright Then differentiation

$$
f'(x) = \sum^{N} f_n i n e^{inx} + O(e^{-N})
$$
 good

 \blacktriangleright but products

$$
f(x)g(x) = \sum_{n}^{N} \sum_{k}^{N} f_k g_{n-k} e^{inx} \text{ bad}
$$

 \triangleright So use pseudo-spectral – evaluate products in real space and derivatives in Fourier space.

Finite Differences

- \blacktriangleright Simple
- \blacktriangleright Needs coordinate grid
	- \blacktriangleright gives organised labelling
	- \triangleright consider conformal map
- \blacktriangleright Differentiation central 2nd order

$$
f'' \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}
$$

 \blacktriangleright Conservative, e.g.

$$
\nabla^4 \psi = \nabla \times \nabla \cdot (\nabla + \nabla^T) \nabla \times \psi \neq \nabla^2 \nabla^2 \psi
$$

Spectral 2

- \triangleright Galerkin or collocation to satisfy governing equations
- \blacktriangleright Fast Transforms useful
- \triangleright Smooth OK, discontinuities bad (hidden at boundaries?)
- Aliasing – chop top $\frac{1}{3}$ of spectrum

Fractional time-step

Pressure ensures incompressibility

Half step to u^* using no-slip BC

$$
\frac{u^*-u^n}{\Delta t} = - (u\cdot \nabla u)^n + \nabla \cdot \sigma^n
$$

Project to incompressible

$$
u^{n+1} = u^* - \Delta t \nabla \rho^{n+1}, \qquad \text{so} \quad \nabla \cdot u^{n+1} = 0
$$

i.e. solve

$$
\Delta t \nabla^2 p^{n+1} = \nabla \cdot u^*
$$

Also pressure update $O(\Delta t^2)$

FE pressure problems

► Spurious pressure modes with " $\nabla p = 0$ " – no staggered FE \blacktriangleright Locking

One Δ has $1p + 3u + 3v$

All grid has $18p + 4y + 4y$ if no-slip bc

Use 'bubble elements' with extra u, v at centre of triangles

FD pressure problems

Spurious pressure modes

Avoided by staggered grid

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$
\sigma = -\rho l + 2\mu E + \sigma^{\text{elastic}},
$$

where μ can be arbitrary and σ^elastic the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$
-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}
$$

Need fast elliptic solver

- \triangleright conjugate gradients
- \blacktriangleright multigrid
- \blacktriangleright domain decomposition

Elliptic part 2

- \blacktriangleright Possible $\mu(x)$
- Possible anisotropic μ , e.g. FENE $AI + IA$
- \blacktriangleright Fast relaxed modes

$$
\mu = \mu_0 + \sum_{\tau_i \ll \dot{\gamma}^{-1}} G_i \tau_i
$$

Hyperbolic part 2

Finite Elements

 \blacktriangleright PUPG – Streamline Upwinding Petrov Galerkin:

$$
\big(\text{stress equation})\cdot(\phi+h\hat{u}\cdot\nabla\phi)\,dV=0,
$$

but large numerical diffusion

- \blacktriangleright Lagrangian FE
	- ► exact $\int \nabla u Dt$

Z

- \blacktriangleright needs regridding
- \triangleright no fast elliptic solver

Hyperbolic part

Stress equation is hyperbolic PDE

$$
\frac{D\sigma}{Dt} = F(\sigma, \nabla u) \qquad \text{minor difficulty}
$$

or streamwise integral equation (but DE better)

$$
\sigma(t) = \int^t G(t-s)A^T A_{ts} Dt
$$

Finite Differences

- \blacktriangleright second-order with 'flux-limiters', e.g. MINMOD
- \triangleright use characteristics = streamlines

Hyperbolic part 3

Typical erroneous treatment of hyperbolic stress equation

Continuous curve is correct solution. Others have spurious oscillations.

Bench marks

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam Dominated by shear

2. Contraction, 4:1 Difficult sharp corner

 11111111

Bench marks 2

3. Journal bearing Good for spectral

4. Wavy-wall pipe Good for spectral

Eventually different algorithms produced the same results!

Numerical problems

- \triangleright Convergence tests rarely done (well)
- \blacktriangleright New numerical instability
- \triangleright Corner singularity \rightarrow mess downstream
- \blacktriangleright Thin layers of high stress
- Initing (maximum) value of De , e.g. sphere in a tube:
	- \blacktriangleright UCM $De_{max} = 2.17$
	- \triangleright O-B $De_{\text{max}} = 1.28$ Fan (2003) JNNFM 110

Numerical problems 2

New numerical instability Plotting σ_{xx}/σ_{xy} vs $\Delta y/\Delta x$

Need $\Delta y < \Delta x \frac{\sigma_{xy}}{x}$ $\frac{\partial^2 xy}{\partial x \partial x}$ to resolve direction of large N_1

Numerical problems 3

Thin layers of high stress

Flow past a sphere in a tube

Need to resolve

Other problems

- \blacktriangleright Need FENE modification of Oldroyd-B to avoid negative viscosities
- \blacktriangleright Smooth corners in contraction flow
- \triangleright Contraction \rightarrow Expansion, avoids long relaxation distance
- \triangleright Micro-Macro Brownian fields, with same random Brownian forces in all spatial blocks, see later