Chapter 7: Microstructural studies for rheology Microstructural studies for rheology

» To calculate the flow of complex fluids, need governing
equations, » Micro & macro views

> in particular, the constitutive equation relating stress to flow » Einstein viscosity

and its history. » Rotations

» Either 'ad hoc’, such as Oldroyd-B differential equation and » Deformations

BKZ integral equation, .
» Interactions

» Or look at microstructure for highly idealised systems and

» Polymers
derive their constitutive equations.
» Others
» Most will be suspensions of small particles in Newtonian
viscous solvent.
Micro & macro views Separation of length scales
Essential
Micro ¢ < L Macro
Micro = particle 1um Macro = flow, 1cm
» Separation of length scales
> Micro <> Macro connections » Micro and Macro time scales similar
» Case of Newtonian solvent » Need ¢ small for small micro-Reynolds number
€2
» Homogenisation Rey = % <1,

otherwise possible macro-flow boundary layers &« £

2
But macro-Reynolds number Re; = % can be large

» If / £ L, then non-local rheology



Two-scale problem ¢ < L 1. Macro—micro connection

. . . » Particles passively move with macro-flow u
» Solve microstructure — tough, must idealise

» Particles actively rotate, deform & interact with
» Extract macro-observables — easy

macro-shear YVu

Here: suspension of particles in Newtonian viscous solvent
both needing Re; < 1.

2. Micro—macro connection Reduction for suspension with Newtonian viscous solvent

Macro = continuum = average/smear-out micro details Write:

o=—pl+2ue+o"
E.g. average over representative volume V with £ <« V1/3 <« L
with pressure p, solvent viscosity u, strain-rate e,

= _ 1/ odV and o non-zero only inside particles.
Vv

) o Average:
Also ensemble averaging and homogenisation o= —pl+2ue+or
To be used in averaged = macro momentum equation with

ou _ — 1

p[”+u.vu]:v.a+F a+:v/a+dV:n</ . a*dv>
ot v particle types of particle

NB micro-Reynolds stresses (pu)'u’ small for Re; < 1. with n number of particles per unit volume



Reduction for suspension with Newtonian viscous solvent 2 Homogenisation: asymptotics for { < L

Inside rigid particles e =0, so o = 0.
Also o = Ok(0ikx;) — Xk, ignoring gravity dgo = 0, Easier transport problem to exhibit method

>0 V- k-VT=Q
/ ot dV = / o-nxdA
particle particle

so only need o on surface of particle. (Detailed cases soon.)

with k & @ varying on macroscale x and microscale £ = x/e,

Multiscale asymptotic expansion
Hence

o= —pl +2ue + n/ o-nxdA T(x;€) ~ To(x,€) + €Ta(x,€) + € Ta(x,£)

particle

Integral called ‘stresslet’, is the force-dipole strength of the particle.

Homogenisation 2 Homogenisation 3
€ el
O¢kdTo =0 ke L = —9ckd T
e To=T() Solution Ty is linear in forcing Ox T, details depending on k(§):
Thus T varies only slowly at leading order, with microscale making T1(x,€) = A(§)9x To

small perturbations.



Homogenisation 4 Homogenisation 5

0. NB: Leading order Ty uniform at microlevel, with therefore no
Dckde Ty = Q — Okdy Ty — Dekdh Ty — Dkde Ty local heat transport

Secularity: (RHS) = 0 else T, = O(&£2) which contradicts NB: Micro problem forced by V Ty. Need to solve
asymptoticity. (Periodicity not necessary.)
Hence a0 V - kV - Thicro =0

0= <Q> _8X<k>8XT0_8X<k67£>8XTO Ticro —+ X -V Tg

Solution

Hence macro description Thicro = (x +€A)V Ty

OA Hence heat flux
VKVT=Q  with K= <k ; ka§> and Q" — (Q)
<q> = <kVTmicro> = <k e 6kVA> VT

Micro & macro views Microstructural studies for rheology

» Micro & macro views

_ b Einctein viccac
» Separation of length scales Bl e

» Micro <> Macro connections » Rotations
» Case of Newtonian solvent = [Detemeriens
» Homogenisation

» Interactions
» Polymers

» Others



Einstein viscosity Stokes problem for Einstein viscosity

V:u=0 in r>a

Simplest — can show all details.
0=—-Vp+puV3u in r>a

Highly idealised — many generalisations

» Spheres — no orientation problems - .
u=V+wxXxx on r=a wit ,w consts

» Rigid — no deformation problems _ _
» Dilute and Inert — no interactions problems NS CSsEia VS el aee

Micro problem F:/ o-ndA =0, G:/ xxo-ndA=0
r=a r=a

» Isolated rigid sphere
Split general linear shearing flow VU into symmetric strain-rate E

and antisymmetric vorticity 2x, i.e.

x-VU=E-x+Q xx

» force-free and couple-free

> in a general linear shearing flow VU

> Stokes flow
NB: The vorticity vector = V x u = 2€.
NB: Stokes problem is linear and instantaneous  Student Ex
Solution of Stokes problem for Einstein viscosity Result for Einstein viscosity (1905)
» F =0 gives V = U, i.e. translates with macro flow S.Ex
» G =0 gives w = , i.e. rotates with macro flow S.Ex 4
Then S.Ex o= —pl +2uE +5uE¢ with volume fraction ¢ = n?a3
u:U+E-x+Qxx—E-xa—S—XS(X.E'X) aj_f Hence effective viscosity
rd 2r2 o
5
x - E-x)a3 ¥ — 14+ =
L w=n(1+30)
Evaluate vi t ticle Student E
VEISEASS VIZEEE BUE Bl Peindals Haent = » Result independent of type of flow — shear, extensional
o'~n|r_a = SﬁE - X » Result independent of particle size — OK polydisperse

2a . . . s
_ - » Einstein used another averaging of dissipation
Evaluate particle contribution to macro/average stress which would not give normal stresses with o : £ = 0,

4m 4 which arbitrarily cancelled divergent integrals (hydrodynamics
_onxdA= 5“E?a is long-ranged)
particle



