Chapter 7: Microstructural studies for rheology

- \triangleright To calculate the flow of complex fluids, need governing equations,
- \triangleright in particular, the constitutive equation relating stress to flow and its history.
- ► Either 'ad hoc', such as Oldroyd-B differential equation and BKZ integral equation,
- ▶ Or look at microstructure for highly idealised systems and derive their constitutive equations.
- \triangleright Most will be suspensions of small particles in Newtonian viscous solvent.

Microstructural studies for rheology

- \blacktriangleright Micro & macro views
- \blacktriangleright Einstein viscosity
- \blacktriangleright Rotations
- \blacktriangleright Deformations
- \blacktriangleright Interactions
- ▶ Polymers
- ► Others

Micro & macro views

- \blacktriangleright Separation of length scales
- \blacktriangleright Micro \leftrightarrow Macro connections
- \blacktriangleright Case of Newtonian solvent
- \blacktriangleright Homogenisation

Separation of length scales

Essential

Micro $\ell \ll L$ Macro

Micro $=$ particle 1μ $Maccro = flow, 1cm$

- \triangleright Micro and Macro time scales similar
- \blacktriangleright Need ℓ small for small micro-Reynolds number $Re_{\ell} = \frac{\rho \gamma \ell^2}{\mu}$ $\frac{\gamma\ell^2}{\mu}\ll 1$,

otherwise possible macro-flow boundary layers $\ll \ell$ But macro-Reynolds number $Re_\mathsf{L} = \frac{\rho \gamma \mathsf{L}^2}{\mu}$ can be large

If $\ell \nless L$, then non-local rheology

Two-scale problem $\ell \ll L$

- \triangleright Solve microstructure tough, must idealise
- Extract macro-observables $-$ easy

Here: suspension of particles in Newtonian viscous solvent

1. Macro→micro connection

- \blacktriangleright Particles passively move with macro-flow \boldsymbol{u}
- ▶ Particles actively rotate, deform & interact with
- macro-shear $∇$ u

both needing $Re_{\ell} \ll 1$.

2. Micro→macro connection

 $Macco =$ continuum = average/smear-out micro details

E.g. average over representative volume V with $\ell \ll V^{1/3} \ll L$

$$
\overline{\sigma} = \frac{1}{V} \int_{V} \sigma \, dV
$$

Also ensemble averaging and homogenisation

To be used in averaged $=$ macro momentum equation

$$
\overline{\rho}\left[\frac{\partial \overline{\mathbf{u}}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}}\right] = \nabla \cdot \overline{\sigma} + \overline{F}
$$

NB micro-Reynolds stresses $\overline{(\rho \mathbf{u})' \mathbf{u'}}$ small for $Re \ll 1$.

Reduction for suspension with Newtonian viscous solvent

Write:

$$
\sigma = -\rho l + 2\mu e + \sigma^+
$$

with pressure p , solvent viscosity μ , strain-rate e , and σ^+ non-zero only inside particles.

Average:

$$
\overline{\sigma} = -\overline{\rho}l + 2\mu\overline{e} + \overline{\sigma^+}
$$

with

$$
\overline{\sigma^+} = \frac{1}{V} \int_V \sigma^+ \, dV = n \left\langle \int_{\text{particle}} \sigma^+ \, dV \right\rangle_{\text{types of particle}}
$$

with n number of particles per unit volume

Inside rigid particles $e=0$, so $\sigma^+=\sigma.$

Also $\sigma_{ij}=\partial_k(\sigma_{ik}x_j)-x_j\partial_k\sigma_{ik}$, ignoring gravity $\partial_k\sigma_{ik}=0$, so $\int_{\rm particle}$ σ^+ dV $= \int_{\rm particle} \sigma\!\cdot\! n\, \mathsf{x}\, \mathsf{d}\mathsf{A}$

so only need σ on surface of particle. (Detailed cases soon.)

Hence

$$
\overline{\sigma} = -\overline{p}l + 2\mu\overline{e} + n\int_{\text{particle}} \sigma \cdot n \times dA
$$

Integral called 'stresslet', is the force-dipole strength of the particle.

Homogenisation 2

$$
\epsilon^{-2}
$$

 ∂_ξ k ∂_ξ ${\mathcal T}_0 = 0$

i.e. $\mathcal{T}_0 = \mathcal{T}(x)$

Thus τ varies only slowly at leading order, with microscale making small perturbations.

Homogenisation: asymptotics for $\ell \ll L$

Easier transport problem to exhibit method

 $\nabla \cdot \vec{k} \cdot \nabla T = Q$

with k & Q varying on macroscale x and microscale $\xi = x/\epsilon,$

Multiscale asymptotic expansion

$$
T(x; \epsilon) \sim T_0(x, \xi) + \epsilon T_1(x, \xi) + \epsilon^2 T_2(x, \xi)
$$

Homogenisation 3

 ϵ^{-1} :

 $\partial_\xi k \partial_\xi T_1 = -\partial_\xi k \partial_\mathsf{x} T_0$

Solution $\, T_{1}$ is linear in forcing $\partial_{\mathsf{x}} \, T_{0}$, details depending on $\,$ k($\zeta)$:

 $\mathcal{T}_1(\mathsf{x},\xi)=\mathcal{A}(\xi)\partial_\mathsf{x}\,\mathcal{T}_0$

Homogenisation 4

 ϵ^0 :

 $\partial_{\xi}k\partial_{\xi}T_2 = Q - \partial_{x}k\partial_{x}T_0 - \partial_{\xi}k\partial_{x}T_1 - \partial_{x}k\partial_{\xi}T_1$

Secularity: $\langle RHS \rangle = 0$ else $T_2 = O(\xi^2)$ which contradicts asymptoticity. (Periodicity not necessary.) Hence

$$
0 = \langle Q \rangle - \partial_x \langle k \rangle \partial_x T_0 - \partial_x \langle k \frac{\partial A}{\partial \xi} \rangle \partial_x T_0
$$

Hence macro description

$$
\nabla k^* \nabla T = Q^* \quad \text{with} \quad k^* = \left\langle k + k \frac{\partial A}{\partial \xi} \right\rangle \quad \text{and} \quad Q^* = \langle Q \rangle
$$

Micro & macro views

- \blacktriangleright Separation of length scales
- \triangleright Micro \leftrightarrow Macro connections
- \blacktriangleright Case of Newtonian solvent
- ▶ Homogenisation

Homogenisation 5

NB: Leading order T_0 uniform at microlevel, with therefore no local heat transport

NB: Micro problem forced by ∇T_0 . Need to solve

$$
\nabla \cdot k \nabla \cdot T_{\text{micro}} = 0
$$

$$
T_{\text{micro}} \rightarrow x \cdot \nabla T_0
$$

Solution

$$
T_{\text{micro}} = (x + \epsilon A) \nabla T_0
$$

Hence heat flux

$$
\langle q \rangle = \langle k \nabla \, T_{\rm micro} \rangle = \langle k + \epsilon k \nabla A \rangle \, \nabla \, T_0
$$

Microstructural studies for rheology

- ► Micro & macro views
- \blacktriangleright Einstein viscosity
- \blacktriangleright Rotations
- \blacktriangleright Deformations
- \blacktriangleright Interactions
- ▶ Polymers
- ► Others

Einstein viscosity

Simplest – can show all details.

Highly idealised – many generalisations

- \triangleright Spheres no orientation problems
- \blacktriangleright Rigid no deformation problems
- \triangleright Dilute and Inert no interactions problems

Micro problem

- \blacktriangleright Isolated rigid sphere
- \blacktriangleright force-free and couple-free
- in a general linear shearing flow $\nabla \overline{U}$
- \blacktriangleright Stokes flow

Solution of Stokes problem for Einstein viscosity

- \blacktriangleright **F** = 0 gives **V** = \overline{U} , i.e. translates with macro flow S.Ex
- \bullet **G** = 0 gives $\omega = \Omega$, i.e. rotates with macro flow S.Ex

Then S.Ex

$$
\mathbf{u} = \overline{U} + \mathbf{E} \cdot \mathbf{x} + \Omega \times \mathbf{x} - \mathbf{E} \cdot \mathbf{x} \frac{a^5}{r^5} - \mathbf{x} \frac{5(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})}{2r^2} \left(\frac{a^3}{r^3} - \frac{a^5}{r^5}\right)
$$

$$
p = -5\mu \frac{(\mathbf{x} \cdot \mathbf{E} \cdot \mathbf{x})a^3}{r^5}
$$

Evaluate viscous stress on particle Student Ex

$$
\sigma \cdot n\big|_{r=a} = \frac{5\mu}{2a} \mathbf{E} \cdot \mathbf{x}
$$

Evaluate particle contribution to macro/average stress

$$
\int_{\text{particle}} \sigma \cdot n \, \mathbf{x} \, dA = 5\mu \mathbf{E} \frac{4\pi}{3} a^3
$$

Stokes problem for Einstein viscosity

$$
\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad r > a
$$

$$
0 = -\nabla p + \mu \nabla^2 \mathbf{u} \quad \text{in} \quad r > a
$$

$$
\mathbf{u} = \mathbf{V} + \omega \times \mathbf{x} \quad \text{on} \quad r = a \quad \text{with} \quad V, \omega \text{ consts}
$$
\n
$$
\mathbf{u} \rightarrow \overline{U} + \mathbf{x} \cdot \nabla \overline{U} \quad \text{as} \quad r \rightarrow \infty
$$

$$
\mathbf{F} = \int_{r=a} \sigma \cdot n \, dA = 0, \qquad \mathbf{G} = \int_{r=a} \mathbf{x} \times \sigma \cdot n \, dA = 0
$$

Split general linear shearing flow $\nabla \overline{U}$ into symmetric strain-rate **E** and antisymmetric vorticity $\Omega \times$, i.e.

$$
\mathbf{x}\cdot\nabla\overline{U}=\mathbf{E}\cdot\mathbf{x}+\Omega\times\mathbf{x}
$$

- NB: The vorticity vector = $\nabla \times$ **u** = 2Ω.
- NB: Stokes problem is linear and instantaneous Student Ex

Result for Einstein viscosity (1905)

$$
\overline{\sigma} = -\overline{p}I + 2\mu \mathbf{E} + 5\mu \mathbf{E}\phi
$$
 with volume fraction $\phi = n\frac{4\pi}{3}a^3$

Hence effective viscosity

$$
\mu^* = \mu \left(1 + \frac{5}{2} \phi \right)
$$

- \triangleright Result independent of type of flow shear, extensional
- Result independent of particle size $-$ OK polydisperse
- \blacktriangleright Einstein used another averaging of dissipation which would not give normal stresses with σ : $E = 0$, which arbitrarily cancelled divergent integrals (hydrodynamics is long-ranged)