
Chapter 7: Microstructural studies for rheology

◮ To calculate the flow of complex fluids, need governing

equations,

◮ in particular, the constitutive equation relating stress to flow

and its history.

◮ Either ‘ad hoc’, such as Oldroyd-B differential equation and

BKZ integral equation,

◮ Or look at microstructure for highly idealised systems and

derive their constitutive equations.

◮ Most will be suspensions of small particles in Newtonian

viscous solvent.
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Separation of length scales

Essential
Micro ℓ ≪ L Macro

Micro = particle 1µm Macro = flow, 1cm

◮ Micro and Macro time scales similar

◮ Need ℓ small for small micro-Reynolds number

Reℓ =
ργℓ2

µ ≪ 1,

otherwise possible macro-flow boundary layers 6≪ ℓ

But macro-Reynolds number ReL = ργL2

µ can be large

◮ If ℓ ≮ L, then non-local rheology



Two-scale problem ℓ ≪ L

◮ Solve microstructure – tough, must idealise

◮ Extract macro-observables – easy

Here: suspension of particles in Newtonian viscous solvent

1. Macro→micro connection

◮ Particles passively move with macro-flow u

◮ Particles actively rotate, deform & interact with

macro-shear ∇u

both needing Reℓ ≪ 1.

2. Micro→macro connection

Macro = continuum = average/smear-out micro details

E.g. average over representative volume V with ℓ ≪ V 1/3 ≪ L

σ =
1

V

∫

V

σ dV

Also ensemble averaging and homogenisation

To be used in averaged = macro momentum equation

ρ

[

∂u

∂t
+ u · ∇u

]

= ∇ · σ + F

NB micro-Reynolds stresses (ρu)′u′ small for Reℓ ≪ 1.

Reduction for suspension with Newtonian viscous solvent

Write:
σ = −pI + 2µe + σ+

with pressure p, solvent viscosity µ, strain-rate e,
and σ+ non-zero only inside particles.

Average:
σ = −pI + 2µe + σ+

with

σ+ =
1

V

∫

V

σ+ dV = n

〈
∫

particle

σ+ dV

〉

types of particle

with n number of particles per unit volume



Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles e = 0, so σ+ = σ.

Also σij = ∂k(σikxj)− xj∂kσik , ignoring gravity ∂kσik = 0,
so

∫

particle

σ+ dV =

∫

particle

σ ·n x dA

so only need σ on surface of particle. (Detailed cases soon.)

Hence

σ = −pI + 2µe + n

∫

particle

σ ·n x dA

Integral called ‘stresslet’, is the force-dipole strength of the particle.

Homogenisation: asymptotics for ℓ ≪ L

Easier transport problem to exhibit method

∇ · k · ∇T = Q

with k & Q varying on macroscale x and microscale ξ = x/ǫ,

Multiscale asymptotic expansion

T (x ; ǫ) ∼ T0(x , ξ) + ǫT1(x , ξ) + ǫ2T2(x , ξ)

Homogenisation 2

ǫ−2:
∂ξk∂ξT0 = 0

i.e. T0 = T (x)

Thus T varies only slowly at leading order, with microscale making
small perturbations.

Homogenisation 3

ǫ−1:
∂ξk∂ξT1 = −∂ξk∂xT0

Solution T1 is linear in forcing ∂xT0, details depending on k(ξ):

T1(x , ξ) = A(ξ)∂xT0



Homogenisation 4

ǫ0:
∂ξk∂ξT2 = Q − ∂xk∂xT0 − ∂ξk∂xT1 − ∂xk∂ξT1

Secularity: 〈RHS〉 = 0 else T2 = O(ξ2) which contradicts
asymptoticity. (Periodicity not necessary.)
Hence

0 = 〈Q〉 − ∂x〈k〉∂xT0 − ∂x〈k
∂A

∂ξ
〉∂xT0

Hence macro description

∇k∗∇T = Q∗ with k∗ =

〈

k + k
∂A

∂ξ

〉

and Q∗ = 〈Q〉

Homogenisation 5

NB: Leading order T0 uniform at microlevel, with therefore no
local heat transport

NB: Micro problem forced by ∇T0. Need to solve

∇ · k∇ · Tmicro = 0

Tmicro → x · ∇T0

Solution
Tmicro = (x + ǫA)∇T0

Hence heat flux

〈q〉 = 〈k∇Tmicro〉 = 〈k + ǫk∇A〉∇T0
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Einstein viscosity

Simplest – can show all details.

Highly idealised – many generalisations

◮ Spheres – no orientation problems

◮ Rigid – no deformation problems

◮ Dilute and Inert – no interactions problems

Micro problem

◮ Isolated rigid sphere

◮ force-free and couple-free

◮ in a general linear shearing flow ∇U

◮ Stokes flow

Stokes problem for Einstein viscosity

∇ · u = 0 in r > a

0 = −∇p + µ∇2
u in r > a

u = V + ω × x on r = a with V , ω consts

u → U + x · ∇U as r → ∞

F =

∫

r=a

σ ·n dA = 0, G =

∫

r=a

x× σ ·n dA = 0

Split general linear shearing flow ∇U into symmetric strain-rate E

and antisymmetric vorticity Ω×, i.e.

x · ∇U = E · x+Ω× x

NB: The vorticity vector = ∇× u = 2Ω.

NB: Stokes problem is linear and instantaneous Student Ex

Solution of Stokes problem for Einstein viscosity

◮ F = 0 gives V = U, i.e. translates with macro flow S.Ex

◮ G = 0 gives ω = Ω, i.e. rotates with macro flow S.Ex

Then S.Ex

u = U + E · x+Ω× x− E · x
a5

r5
− x

5(x · E · x)

2r2

(

a3

r3
−

a5

r5

)

p = −5µ
(x · E · x)a3

r5

Evaluate viscous stress on particle Student Ex

σ ·n
∣

∣

r=a
=

5µ

2a
E · x

Evaluate particle contribution to macro/average stress
∫

particle

σ ·n x dA = 5µE
4π

3
a3

Result for Einstein viscosity (1905)

σ = −pI + 2µE+ 5µEφ with volume fraction φ = n
4π

3
a3

Hence effective viscosity

µ∗ = µ

(

1 +
5

2
φ

)

◮ Result independent of type of flow – shear, extensional

◮ Result independent of particle size – OK polydisperse

◮ Einstein used another averaging of dissipation
which would not give normal stresses with σ : E = 0,
which arbitrarily cancelled divergent integrals (hydrodynamics
is long-ranged)


