## Microstructural studies for rheology

- Micro & macro views
- Einstein viscosity
- Rotations
- Deformations
- Interactions
- Polymers
- Others

# Rotation of particles - rigid and dilute

Spheroid: axes a, b, b, aspect ratio  $r = \frac{a}{b}$ .

rod r > 1

disk r < 1

Direction of axis  $\mathbf{p}(t)$ , unit vector.

Stokes flow by Oberbeck (1876). See Lamb. Uses ellipsoidal harmonic function in place of spherical harmonic 1/r

$$\int_{s(\mathbf{x})}^{\infty} \frac{ds'}{\prod_{i=1}^{3} (a_{i}^{2} + s')^{1/2}}, \qquad \text{where} \quad \sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}^{2} + s(\mathbf{x})} = 1.$$

## Rotations

- Rotation of particles
- Macro stress
- Uni-axial straining
  - Extensional viscosity rods
  - Extensional viscosity disks
- ► Simple shear
  - Shear viscosity
- Anisotropy
- Brownian rotations
  - Macro stress
  - Viscosities
  - Closures

# Rotation of particles

#### Microstructural evolution equation

$$\frac{D\mathbf{p}}{Dt} = \Omega \times \mathbf{p} + \frac{r^2 - 1}{r^2 + 1} \left[ \mathbf{E} \cdot \mathbf{p} - \mathbf{p} (\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \right]$$

Straining less efficient at rotation by  $\frac{r^2-1}{r^2+1}$ .

Long rods $\frac{r^2-1}{r^2+1} \rightarrow +1$ i.e. Upper Convective Derivative $\stackrel{\nabla}{A}$ Flat disks $\frac{r^2-1}{r^2+1} \rightarrow -1$ i.e. Lower Convective Derivative $\stackrel{\triangle}{A}$ 

# Rotation of particles

Student Exercise

Show that

$$\mathbf{p}(t) = rac{\mathbf{q}(t)}{|\mathbf{q}(t)|}$$
 with  $\dot{\mathbf{q}} = \Omega imes \mathbf{q} + rac{r^2 - 1}{r^2 + 1} \mathbf{E} \cdot \mathbf{q}$ 

satisfies

$$\frac{D\mathbf{p}}{Dt} = \Omega \times \mathbf{p} + \frac{r^2 - 1}{r^2 + 1} \left[ \mathbf{E} \cdot \mathbf{p} - \mathbf{p} (\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \right]$$

Hence find  $\mathbf{p}(t)$  for axisymmetric extensional flow and for simple shear, starting from an arbitrary initial  $\mathbf{p}(0)$ .

 $\mathsf{Micro}{\rightarrow}\mathsf{macro}\ \mathsf{link:}\ \mathsf{stress}$ 

 $\overline{\sigma} = -\overline{p}I + 2\mu \mathbf{E} + 2\mu \phi \left[ \mathbf{A} (\mathbf{p} \cdot \mathbf{E} \cdot \mathbf{p}) \mathbf{p} \mathbf{p} + \mathbf{B} (\mathbf{p} \cdot \mathbf{E} + \mathbf{E} \cdot \mathbf{p}) + \mathbf{C} \mathbf{E} \right]$ 

with A, B, C material constants depending on shape but not size

$$\begin{array}{ccc} A & B & C \\ r \to \infty & \frac{r^2}{2(\ln 2r - \frac{3}{2})} & \frac{6\ln 2r - 11}{r^2} & 2 \\ r \to 0 & \frac{10}{3\pi r} & -\frac{8}{3\pi r} & \frac{8}{3\pi r} \end{array}$$

Effective extensional viscosity for rods

$$u_{\text{ext}}^* = \mu \left( 1 + \phi \frac{r^2}{3(\ln 2r - 1.5)} \right)$$

Large at  $\phi \ll 1$  if  $r \gg 1$ . Now  $\phi = \frac{4\pi}{3}ab^2$  and  $r = \frac{a}{b}$ , so

$$\mu_{\rm ext}^* = \mu \left( 1 + \frac{4\pi na^3}{9(\ln 2r - 1.5)} \right)$$

so same as sphere of radius *a* its largest dimension (except for factor  $1.2(\ln 2r - 1.5)$ ).

Hence 5ppm of PEO can have a big effect in drag reduction.

Dilute requires  $na^3 \ll 1$ , but extension by Batchelor to semi-dilute  $\phi \ll 1 \ll \phi r^2$ 

$$\mu_{\rm ext}^* = \mu \left( 1 + \frac{4\pi n a^3}{9 \ln \phi^{-1/2}} \right)$$

Rotation in uni-axial straining

$$\mathbf{U} = E(x, -\frac{1}{2}y, -\frac{1}{2}z)$$

rotates to

Aligns with stretching direction  $\rightarrow$  maximum dissipation

rotates to

Aligns with inflow direction  $\rightarrow$  maximum dissipation

Effective extensional viscosity for disks

$$\mu_{\text{ext}}^* = \mu \left( 1 + \phi \frac{10}{3\pi r} \right) = \mu \left( 1 + \frac{10nb^3}{9} \right)$$

where for disks b is the largest dimension (always the largest for Stokes flow).

No semi-dilute theory, yet.

## Effective shear viscosity

Jeffery orbits (1922)

$$\dot{\phi} = \frac{\gamma}{r^2 + 1} (r^2 \cos^2 \phi + \sin^2 \phi)$$
$$\dot{\theta} = \frac{\gamma(r^2 - 1)}{4(r^2 + 1)} \sin 2\theta \sin 2\phi$$

Solution with orbit constant *C*.

$$\tan \phi = r \tan \omega t, \quad \omega = \frac{\gamma r}{r^2 + 1}, \quad \tan \theta = Cr(r^2 \cos^2 \phi + \sin^2 \phi)^{-1/2}$$

Effective shear viscosity Leal & H (1971)

$$\mu^*_{
m shear} = \mu \left( 1 + \phi egin{cases} 0.32 r / \ln r & {
m rods} \ 3.1 & {
m disks} \end{pmatrix} 
ight.$$

numerical coefficients depend on distribution across orbits, C.

Behaviour in simple shear

 $\mathbf{U} = (\gamma y, 0, 0)$ 

rotates to

Rotates to flow direction  $\rightarrow$  minimum dissipation

rotates to

Rotates to lie in flow  $\rightarrow$  minimum dissipation

Both Tumble: flip in  $1/\gamma$ , then align for  $r/\gamma$  ( $\delta\theta = 1/r$  with  $\dot{\theta} = \gamma/r^2$ )

# Remarks

Important to Turbulent Drag Reduction

Three measures of concentration of rods

$$\begin{cases} \phi r^2 \doteq na^3 & \text{for } \mu_{\text{ext}}^* \\ \phi r \doteq na^2 b & \text{for } \mu_{\text{shear}}^* \\ \phi \doteq nab^2 & \text{for permeability} \end{cases}$$

## Brownian rotations - for stress relaxation

Rotary diffusivity: for spheres, rods and disks

$$D_{\rm rot} = kT / 8\pi\mu a^3, \quad kT / \frac{8\pi\mu a^2}{3(\ln 2r - 1.5)}, \quad kT / \frac{8}{3}\mu b^3$$

NB largest dimension, again After flow is switched off, particles randomise orientation in time  $1/6D \sim 1$  second for  $1\mu m$  in water.

State of alignment: probability density  $P(\mathbf{p}, t)$  in orientation space = unit sphere  $|\mathbf{p}| = 1$ . Fokker-Plank equation

$$rac{\partial P}{\partial t} + 
abla \cdot (\dot{\mathbf{p}}P) = D_{\mathrm{rot}} 
abla^2 P$$

 $\dot{\mathbf{p}}(\mathbf{p})$  earlier deterministic.

Extensional and shear viscosities

Small strain-hardening Orientation effects Large shear-thinning

Also  $N_1 > 0$ ,  $N_2$  small < 0. Average stress over distribution P

Averaged stress

$$\sigma = -pI + 2\mu E + 2\mu \phi [AE : \langle \mathbf{pppp} \rangle \\ + B(E \cdot \langle \mathbf{pp} \rangle + \langle \mathbf{pp} \rangle \cdot E) + CE + FD_{rot} \langle \mathbf{pp} \rangle]$$

Last  $FD_{rot}$  term is entropic stress. Extra material constant  $F = 3r^2/(\ln 2r - 0.5)$  for rods and  $12/\pi r$  for disks.

Averaging

$$\langle \mathbf{p}\mathbf{p}
angle = \int_{|\mathbf{p}|=1} \mathbf{p}\mathbf{p}P\,dp$$

Solve Fokker-Plank: numerical, weak and strong Brownian rotations

### The closure problem

Second moment of Fokker-Plank equation

$$\frac{D}{Dt} \langle \mathbf{pp} \rangle - \Omega \cdot \langle \mathbf{pp} \rangle \langle \mathbf{pp} \rangle \cdot \Omega$$

$$= \frac{r^2 - 1}{r^2 + 1} \left[ E \cdot \langle \mathbf{pp} \rangle + \langle \mathbf{pp} \rangle \cdot E - 2 \langle \mathbf{pppp} \rangle : E \right] - 6D_{\text{rot}} \left[ \langle \mathbf{pp} \rangle - \frac{1}{3}I \right]$$

Hence this and stress need  $\langle \textbf{pppp}\rangle,$  so an infinite hierarchy.

► Simple 'ad hoc' closure

$$\langle \mathbf{pppp} \rangle : E = \langle \mathbf{pp} \rangle \langle \mathbf{pp} \rangle : E$$

Better: correct in weak and strong limits

 $= \frac{1}{5} \left[ 6 \langle \mathbf{p} \mathbf{p} \rangle \cdot E \cdot \langle \mathbf{p} \mathbf{p} \rangle - \langle \mathbf{p} \mathbf{p} \rangle \langle \mathbf{p} \mathbf{p} \rangle : E - 2I(\langle \mathbf{p} \mathbf{p} \rangle^2 : E - \langle \mathbf{p} \mathbf{p} \rangle : E) \right]$ 

New idea Brownian fields: simulate many random walks in orientation space for each point of the complex flow.

# Deformations

### Emulsions

- Rupture
- Theories
- Numerical
- Flexible thread
- Double layer

### Rupture in shear flow



 $\frac{\mu_{\rm int}}{\mu_{\rm ext}}$ 

Experiments: de Bruijn (1989) (=own), Grace (1982) Theories: Barthes-Biesel (1972), Rallison (1981), Hinch & Acrivos (1980)

# Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

- Dilute single drop, volume  $\frac{4\pi}{3}a^3$
- T =surface tension (in rheology  $\sigma$  and  $\gamma$  not possible)
- Newtonian viscous drop  $\mu_{\rm int}$ , solvent  $\mu_{\rm ext}$

 Rupture if  $\mu_{ext} > \frac{T}{Ea}$  (normally)

  $\stackrel{\text{time}}{\longrightarrow}$ 

Irreversible reduction in size to  $a_*={\cal T}/{\mu_{\rm ext}} {\cal E}$  , as coalescence very slow.

Rupture difficult if  $\mu_{\rm int} \ll \mu_{\rm ext}$ 

Too slippery. Become long and thin. Rupture if

 $\mu_{\mathrm{ext}} E > rac{T}{a} egin{cases} 0.54 \left( \mu_{\mathrm{ext}} / \mu_{\mathrm{int}} 
ight)^{2/3} & ext{simple shear} \ 0.14 \left( \mu_{\mathrm{ext}} / \mu_{\mathrm{int}} 
ight)^{1/6} & ext{extension} \end{cases}$ 

but tip-streaming with mobile surfactants (makes rigid end-cap)

$$\mu_{\rm ext}E > \frac{T}{a}0.56$$

Rupture difficult is simple shear if  $\mu_{\mathrm{int}} > 3\mu_{\mathrm{ext}}$ 

- If internal very viscous (  $\mu_{\rm int} \gg \mu_{\rm ext}$ ),
  - then rotates with vorticity,
  - rotating with vorticity, sees alternative stretching and compression,
  - hence deforms little.
- If internal fairly viscous ( $\mu_{
  m int}\gtrsim 3\mu_{
  m ext}$ ),
  - then deforms more,
  - if deformed, rotates more slowly in stretching quadrant,
  - if more deformed, rotates more slowly, so deforms even more, etc etc
- $\blacktriangleright$  until can rupture when  $\mu_{\rm int} \leq 3 \mu_{\rm ext}$

# Inefficiency of rotating by straining

#### Student Exercise

Consider the constitutive equation

$$\sigma = -\rho I + 2\mu_0 E + GA$$

$$\frac{DA}{Dt} - \Omega \cdot A + A \cdot \Omega - \alpha \left( E \cdot A + A \cdot E \right) = -\frac{1}{\tau} \left( A - I \right),$$
in flow  $u = (\Omega + E) \cdot x.$ 

Solve for  $\sigma$  in steady simple shear, finding the shear viscosity and normal stress differences.

Find the condition on the parameters for the shear stress to be a monotonic increasing function of the shear-rate (non-shear-banding).

## Theoretical studies: small deformations

Small ellipsoidal deformation

$$r = a(1 + \mathbf{x} \cdot \mathbf{A}(t) \cdot \mathbf{x} + \text{higher orders})$$

Stokes flow with help of computerised algebra manipulator

$$\frac{D\mathbf{A}}{Dt} - \Omega \cdot \mathbf{A} + \mathbf{A} \cdot \Omega = 2k_1 \mathbf{E} + k_5 (\mathbf{A} \cdot \mathbf{E} + \mathbf{E} \cdot \mathbf{A}) + \dots \\ - \frac{T}{\mu_{\text{ext}} \mathbf{a}} (k_2 \mathbf{A} + k_6 (\mathbf{A} \cdot \mathbf{A}) + \dots)$$

$$\sigma = -pI + 2\mu_{\text{ext}}\mathbf{E} + 2\mu_{\text{ext}}\phi \big[k_3\mathbf{E} + k_7(\mathbf{A}\cdot\mathbf{E} + \mathbf{E}\cdot\mathbf{A}) + \dots - \frac{T}{\mu_{\text{ext}}a}(k_4\mathbf{A} + k_8(\mathbf{A}\cdot\mathbf{A}) + \dots)\big]$$

with  $k_n$  depending on viscosity ratio,  $\lambda=\mu_{\mathrm{int}}/\mu_{\mathrm{ext}}$  ,

$$k_1 = rac{5}{2(2\lambda+3)}, \qquad k_2 = rac{40(\lambda+1)}{(2\lambda+3)(19\lambda+16)}, \ k_3 = rac{5(\lambda-1)}{3(2\lambda+3)}, \qquad k_4 = rac{4}{2\lambda+3}$$

 $k_1$  inefficiency of rotating by straining

# Theoretical studies: small deformations 2

# Equilibrium shapes before rupture extension shear

internal circulation, tank-treading

Rheology before rupture Small strain-hardening, small shear-thinning,  $N_1 > 0$ ,  $N_2 < 0$ .

Repeated rupture leaves  $\mu^* \cong \text{constant}$ . Einstein: independent of size of particle, just depends on  $\phi$ .

Form of constitutive equation

$$\frac{d}{dt}$$
(state) &  $\sigma$  linear in **E** &  $\frac{T}{\mu_{\text{ext}}}$ 

# Numerical studies: boundary integral method

deformation angle

 $\sigma_{xy} N_1, N_2$ 

Different  $\lambda$ . No rupture for  $\lambda = 5$  (\*)

### Electrical double layer on isolated sphere

- another deformable microstructure

- Charged colloidal particle.
- Solvent ions dissociate,
- forming neutralising cloud around particle.
- Screening distance Debye  $\kappa^{-1}$ , with  $\kappa^2 = \sum_i n_i z_i^2 e^2 / \epsilon k T$ .
- ► In flow, cloud distorts a little
- $\rightarrow$  very small change in Einstein  $\frac{5}{2}$ .

# Flexible thread – deformable microstructure

Position  $\mathbf{x}(s, t)$ , arc length s, tension T(s, t)Slender-body theory with 2:1 drag  $\perp: \parallel$ , S.Ex

 $\dot{\mathbf{x}} = \mathbf{x} \cdot \nabla \mathbf{U} + T' \mathbf{x}' + \frac{1}{2} T \mathbf{x}''$ 

Inextensibility  $|\mathbf{x}'| \equiv 1$  gives S.Ex

 $T'' - \frac{1}{2} (\mathbf{x}'')^2 T = -\mathbf{x}' \cdot \nabla \mathbf{U} \cdot \mathbf{x}'$  and T = 0 at ends

Snap straight

H 76

### Interactions

- Hydrodynamic
  - Dilute
  - Experiments
  - Numerical
- Electrical double-layer
  - Concentrated
- ► van der Waals
- Fibres
- Drops
  - Numerical

# Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged Rigid spheres : two bad ideas

Dilute - between pairs (mostly)

Reversible (spheres + Stokes flow)  $\rightarrow$  return to original streamlines But minimum separation is  $\frac{1}{2} 10^{-4}$  radius  $\rightarrow$  sensitive to roughness (typically 1%) when do not return to original streamlines.

# Summing dilute interactions

Divergent integral from  $\nabla \mathbf{u} \sim \frac{1}{r^3}$ Need renormalisation: Batchelor or mean-field hierarchy.

 $\mu^* = \mu \left[ 1 + 2.5\phi + 6.0\phi^2 \right]$ 

- ▶ 6.0 for strong Brownian motion
- ▶ 7.6 for strong extensional flow
- $\blacktriangleright \cong 5$  for strong shear flow, depends on distribution on closed orbits

Small strain-hardening, small shear-thinning

Test of Batchelor  $\phi^2$  result $\mu^* = \mu \left[1 + 2.5\phi + 6.0\phi^2\right]$ Slope 6.0

 $\leftarrow \mu_0$ 

 $\mu_{\infty} \rightarrow$ 

Russel. Saville. Schowalter 1989

Experiments – concentrated Effective viscosities in shear flow  $\mu_0$   $\mu_\infty$   $\mu_\infty$   $\mu_{a^3\gamma/kT}$   $\phi$ Russel, Saville, Schowalter 1989

# Stokesian Dynamics

- (mostly) pairwise additive hydrodynamics

Jamming/locking – clusters across the compressive quadrant

Brady & Bossis (1985)

Fragile clusters if include soft repulsion or Brownian motion

# Stokesian Dynamics 2

Effective viscosity in shear flow

Foss & Brady (2000)

'Stokesian Dynamics' Brady & Bossis Ann. Rev. Fluid Mech. (1988)

# Electrical double-layer interactions

Interaction distance  $r_*$ :

$$6\mu\mu a\gamma r_* = \frac{\epsilon\zeta^2 a^2\kappa}{r_*} e^{-\kappa(r_*-2a)}$$

$$\mu_* = \mu \left( 1 + 2.5\phi + 2.8\phi^2 \left(\frac{r_*}{a}\right)^5 \right) \quad \phi^2 \text{ coefficient as function of } \frac{r_*}{a}$$

$$\left(\frac{r_*}{a}\right)^5 = \text{velocity} \quad \gamma r_* \\ \times \text{ force distance } r_* \\ \times \text{ volume } \phi \left(\frac{r_*}{a}\right)^3$$

Experiments - concentrated

Stress as function of shear-rate at different pH. Suspension of  $0.33 \mu m$  aluminium particles at  $\phi = 0.3$ 

Ducerf (Grenoble PhD 1992)

Note yield stress very sensitive to pH

### Interactions - van der Waals

 $\mathsf{Attraction} \to \mathsf{aggregation}$ 

ightarrow gel (conc) or suspension of flocs (dilute)

### Possible model of size of flocs R

- Number of particles in floc  $N = \left(\frac{R}{a}\right)^d$ , d = 2.3?
- Volume fraction of flocs  $\phi_{\text{floc}} = \phi \left(\frac{R}{a}\right)^3$
- Collision between two flocs
- Hydro force  $6\pi\mu R\gamma R$  = Bond force  $F_b \times$  number of bonds  $N\frac{a}{R}$
- Hence  $\phi_{\text{floc}} = \phi \frac{F_b}{6\pi\mu a^2\gamma}$
- So strong shear-thinning and yields stress  $\phi F_b/a^2$ . Breakdown of structure in rheology  $\mu(\gamma)$

### Interactions – drops

- No jamming/locking of drops (cf rigid spheres)
  - small deformation avoid geometric frustration
  - slippery particle, no co-rotation problems
- $\blacktriangleright$  Faster flow  $\rightarrow$  more deformed  $\rightarrow$  wider gaps in collisions
- Deformed shape has lower collision cross-section so 'dilute' at \u03c6 = 0.3, blood works!

### Interactions – fibres

Cannot pack with random orientation if

 $\phi r > 1$ 

leads to spontaneous alignment, nematic phase transition

Note extensional viscosity  $\propto \phi r^2$  can be big while random, but shear viscosity  $\propto \phi r$  is only big if aligned.

Disk not random if  $\phi \frac{1}{r} > 1$ .

Numerical studies: boundary integral method

 $\phi = 0.3$ ,  $Ca = \mu_{ext}\gamma a/T = 0.3 \ \lambda = 1$ ,  $\gamma t = 10$ , 12 drops, each 320 triangles.

# Numerical studies: boundary integral method 3

deformation angle

 $\sigma_{xy} N_1, N_2$ 

 $\lambda = 1$ , different  $\phi = 0, 0.1, 0.2, 0.3$ . Effectively dilute at  $\phi = 0.3$ .

Numerical studies: boundary integral method 4

Reduced cross-section for collisions

into flow