
8 Fourier Transforms

Given a (sufficiently well behaved) function f : S1 → C, or equivalently a periodic function

on the real line, we’ve seen that we can represent f as a Fourier series

f(x) =
1

2L

∑

n∈Z
f̂n e

inπx/L (8.1)

where the period is 2L. In this chapter we’ll extend these ideas to non-periodic functions

f : R → C. This extension, which is again due to Fourier, is one of the most important

ideas in all Applied Mathematics (and a great deal of Pure). In one form or other it is

at the heart of all spectroscopy (from crystallography to understanding the structure of

proteins in your DNA), to the definition of a particle in Quantum Field Theory, to all

image processing done by the Nvidia graphics chip in your iPad, not to mention Harmonic

Analysis and a large chunk of Representation Theory.

To get started, recall that in the periodic case, the information about our function was

stored in its list of Fourier coefficients f̂n, defined by

f̂n =
1

2π

∫ π

−π
e−inx f(x) dx (8.2)

for n ∈ Z. For a (non-periodic) function f : R → C, we likewise define the Fourier

transform f̃(k) of f(x) to be30

f̃(k) :=

∫ ∞

−∞
e−ikx f(x) dx . (8.3)

The Fourier transform is an example of a linear transform, producing an output function

f̃(k) from the input f(x). We’ll sometimes use the notation f̃ = F [f ], where the F on the

rhs is to be viewed as the operation of ‘taking the Fourier transform’, i.e. performing the

integral in (8.3).

8.1 Simple properties of Fourier transforms

The Fourier transform has a number of elementary properties. For any constants c1, c2 ∈ C
and integrable functions f, g the Fourier transform is linear, obeying

F [c1f + c2g] = c1F [f ] + c2F [g] .

By changing variables in the integral, it is also readily verified that it obeys

translation F [f(x− a)] = e−ikaf̃(k)

re-phasing F [ei"xf(x)] = f̃(k − ")

scaling F [f(cx)] =
1

|c| f̃(k/c) .

30Be warned! Various authors use a factor of 1/2π or 1/
√
2π instead. The choice you make here is purely

conventional, but affects the corresponding choice you make in the Fourier inversion theorem of section 8.2.
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Furthermore, if we define the convolution31 f ∗ g of two functions to be the integral

f ∗ g(x) =
∫ ∞

−∞
f(x− y) g(y) dy (8.4)

then, provided f and g are sufficiently well–behaved for us to change the order of integra-

tion, the Fourier transform is

F [f ∗ g(x)] =
∫ ∞

−∞
e−ikx

[∫ ∞

−∞
f(x− y) g(y) dy

]
dx =

∫

R2
e−ik(x−y) f(x− y) e−iky g(y) dx dy

=

∫ ∞

−∞
e−iku f(u) du

∫ ∞

−∞
e−iky g(y) dy = F [f ]F [g] .

(8.5)

In other words, the Fourier transform of a convolution of two functions is the product of

their Fourier transforms.

By far the most useful property of the Fourier transform comes from the fact that

the Fourier transform ‘turns differentiation into multiplication’. Specifically, the Fourier

transform of the derivative f ′ of a (smooth, integrable) function f is given by

F [f ′(x)] =

∫ ∞

−∞
e−ikx f ′(x) dx = −

∫ ∞

−∞

(
d

dx
e−ikx

)
f(x) dx = ikf̃(k) (8.6)

where we note that the assumption that f(x) was integrable means that in particular it

must decay as |x| → ∞, so there is no boundary term. Notice also that, as a sort of

converse, if f̃(k) = F [f(x)] then the Fourier transform of xf(x) is given by

F [xf(x)] =

∫ ∞

−∞
e−ikx xf(x) dx = i

d

dk

∫ ∞

−∞
e−ikx f(x) dx = if̃ ′(k) (8.7)

provided xf(x) is itself integrable (and thus f̃ is differentiable) so that we can justify

differentiating under the integral sign.

The fact that differentiation wrt x becomes multiplication by ik is important because

it allows us to take the Fourier transform of a differential equation. Suppose

L(∂) =
p∑

r=0

cr
dr

dxr

is a differential operator with constant coefficients cr ∈ C. Then if y : R → C has Fourier

transform ỹ, the Fourier transform of Ly is

F [L(∂)y] = L(ik)ỹ(k) (8.8)

where the differential operator L(∂) has been replaced by muliplication by the polynomial

L(ik) =
p∑

r=0

cr(ik)
r .

31Convolution is ‘Faltung’ in German, which picturesquely describes the way in which the functions are

combined — the graph of g is ßipped (or folded) about the variable vertical line u = x/2 and then integrated

against f .
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(We’ve also assumed that all the Fourier integrals we meet converge). Thus, if y obeys

some differential equation L(∂)y(x) = f(x) on R, then we have simply

ỹ(k) = f̃(k)/L(ik) (8.9)

in terms of the Fourier transforms.

The power of this approach becomes most apparent in higher dimensions. For example,

consider the pde

∇2φ(x)−m2φ(x) = −ρ(x) (8.10)

for φ : Rn → C, where ∇2 is the n-dimensional Laplacian. Defining the Fourier transform

for (appropriately integrable) functions on Rn by the obvious generalization

F [φ(x)] = φ̃(k) =

∫

Rn
e−ik·x φ(x) dnx , (8.11)

our pde becomes simply

φ̃(k) =
ρ̃(k)

|k|2 +m2
(8.12)

in terms of Fourier transforms.

8.2 The Fourier inversion theorem

We’ve just seen that linear differential equations can often become essentially trivial after

a Fourier transform. However, if we are to make use of this result we need to be able to

reconstruct the original function from knowledge of its Fourier transform. Recall that in

the periodic case, we were able to represent

f(x) =
∑

n∈Z
f̂n e

2πinx/L (8.13)

for sufficiently smooth functions (or more generally, distributions) f : S1 → C with period

L. To extend this to the non–periodic case, let’s imagine trying to taking a limit of (8.13)

where the period L → ∞. We define ∆k ≡ 2π/L and note that the coefficients in (8.13)

are

f̂n =
1

L

∫ L/2

−L/2
e−in∆ky f(y) dy =

∆k

2π

∫ L/2

−L/2
e−in∆ky f(y) dy (8.14)

For this integral to exist in the limit L → ∞ we should require that
∫
R |f(y)| exists, but in

that case the 1/L factor implies that for each n, f̂n → 0 too. Nevertheless, for any finite L

we can substitute (8.14) into (8.13) to obtain

f(x) =
∑

n∈Z

(
∆k

2π

∫ L/2

−L/2
ein∆k(x−y) f(y) dy

)
(8.15)

Now recall the Riemann sum definition of the integral of a function g: As ∆k → 0 we have

lim
∆k→0

∑

n∈Z
∆k g(n∆k) =

∫

R
g(k) dk (8.16)
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with k becoming a continuous variable. For (8.15) we take32

g(n∆k) =
ein∆kx

2π

∫ L/2

−L/2
ein∆ky f(y) dy (8.17)

with y being viewed as a parameter. Thus, letting L → ∞ we get

f(x) =
1

2π

∫ ∞

−∞
eikx

[∫

R
e−iky f(y) dy

]
dx =

1

2π

∫ ∞

∞
eikx f̃(k) dk . (8.18)

This result is known as the Fourier inversion theorem; if the manipulations above can be

made rigorous, then the function f(x) itself can be expressed in terms of an integral of the

Fourier transformed function f̃(k). In line with our earlier notation, we sometimes write

f(x) = F−1[f̃(k)] where the rhs is just shorthand for the integral in (8.18).

Notice that the inverse Fourier transform looks almost identical to the Fourier trans-

form itself — the only difference is the sign in the exponent and the factor of 1/2π. In

particular, replacing x by −x in (8.18) we have the duality property

f̃(k) = F [f(x)] ⇔ f(−x) =
1

2π
F [f̃(k)] . (8.19)

This observation is very useful: if we recognize some specific function g as being the Fourier

transform of some function f , then we can immediately write down the Fourier transform

of g itself in terms of f . For example, we saw in equation (8.5) that F [f ∗g(x)] = f̃(k) g̃(k).

It now follows that

F [f(x) g(x)] =
1

2π

∫
f̃(k − ") g̃(") d" =

1

2π
f̃ ∗ g̃(k) (8.20)

so that the Fourier transform of a product of two functions is the convolution of their

individual Fourier transforms.

The Fourier inversion theorem allows us, in principle, to complete the problem of

finding the solution to a linear differential equation. We saw in (8.9) that if L(∂)y(x) = f(x)

then ỹ(k) = f̃(k)/L(ik) where L(ik) is a polynomial in k. Provided the rhs is integrable so

that the Fourier inversion theorem holds, we have now

y(x) =
1

2π

∫ ∞

−∞
eikx

f̃(k)

L(ik) dk . (8.21)

As an example, the pde ∇2φ−m2φ = −ρ on Rn is solved by

φ(x) =
1

(2π)n

∫

Rn

eik·x ρ̃(k)

|k|2 +m2
dnk . (8.22)

Furthermore, from the result (8.20) that the Fourier transform of a product of functions is

the convolution of the Fourier transforms, we see that our result will involve a convolution

of the forcing term f(x) with the inverse Fourier transform of the rational function 1/L(ik).
32The function g in (8.17) itself changes as ∆k ∼ 1/L → 0, because the integral in its definition is taken

over [−L/2, L/2]. However, it has a well defined limit g∆k(n∆k) → g0(k) =
∫∞
−∞ e−iky f(y) dy and so the

limit of (8.15) is still as given in (8.18).
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In practice, the final step of actually carrying out the integrals in the inverse Fourier

transform can often be quite tricky. We’ll look at a few simple examples where we can

guess the answer in section 8.4, but the inverse Fourier transform is usually best done with

the aid of techniques from Complex Analysis that you’ll meet next term.

8.2.1 Parseval’s theorem for Fourier transforms

A further important feature of the Fourier transform is that it preserves the (L2) inner

product of two functions – just as we saw for Fourier series. To see this, suppose f, g :

Rn → C and sufficiently well–behaved that the Fourier transforms f̃ and g̃, exist and that

they can themselves be represented in terms of f̃ and g̃ using the Fourier inversion theorem.

Then

(f, g) =

∫

Rn
f∗(x) g(x) dnx =

∫

Rn
f∗(x)

[
1

2π

∫

Rn
eik·x g̃(k) dnk

]
dnx

=
1

2π

∫

Rn
g̃(k)

[∫

Rn
eik·x f∗(x) dnx

]
dnk

=
1

2π

∫

Rn
g̃(k)

[∫

Rn
e−ik·x f(x) dnx

]∗
dnk =

1

2π

∫

Rn
g̃(k) f̃(k)∗ dnk

=
1

2π
(f̃ , g̃) ,

(8.23)

where in going to the second line we changed the order of the integrals — this step is

justified since we’ve assumed that f and g̃ are both absolutely integrable on Rn in order

for the Fourier transforms and inverse Fourier transforms to exist.

As a special case, if f = g then we obtain

(f, f) =
1

2π
(f̃ , f̃) (8.24)

so that the L2-norm of a Fourier transform agrees with the L2-norm the original function,

up to a factor of
√
2π.33 This is Parseval’s theorem in the context of non–periodic functions.

8.3 The Fourier transform of Schwartz functions and tempered distributions

This section is again non–examinable, though you will need to know the results of subsec-

tion 8.3.1.

In this section we’ll give a more careful discussion of when the Fourier transform exists,

and when the manipulations in the above derivation of the Fourier inversion theorem can

be made rigorous.

The first question we should ask is ‘for what type of object does the Fourier transform

make sense?’. To get started, suppose that f : R → C is Riemann integrable on every

interval [a, b] and that
∫∞
−∞ |f(x)| dx exists. Then whenever k is real, we have

|f̃(k)| =
∣∣∣∣
∫ ∞

−∞
e−ikx f(x) dx

∣∣∣∣ ≤
∫ ∞

−∞
|e−ikx f(x)| dx =

∫ ∞

−∞
|f(x)| dx (8.25)

33Some authors choose to include factors of 1/
√
2π in their definition of the Fourier transform to avoid

this factor here.
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which converges by our assumptions on f . In fact, it’s straightforward to show that with

these assumptions on f , f̃(k) is in fact everywhere continuous (I recommend this as an

excercise if you like Analysis). However, even if
∫
R |f(x)| dx exists, it can often be that∫

R |f̃(k)| dk diverges. For example, suppose f(x) is the ‘top hat function’

f(x) =

{
1 |x| ≤ 1

0 else .
(8.26)

This is certainly integrable, and indeed we readily compute the Fourier transform to be

f̃(k) =

∫ ∞

−∞
e−ikx f(x) dx =

1

2π

∫ 1

−1
e−ikx dx = 2

sin k

k
. (8.27)

The problem is that f̃(k) is now not integrable, since

∫ (N+1)π

−(N+1)π
|f̃(k)|dk ≥

N∑

n=0

∫ (n+ 3
4 )π

(n+ 1
4 )π

|f̃(k)|dk ≥
N∑

n=0

∫ (n+ 3
4 )π

(n+ 1
4 )π

1√
2k

dk

≥
N∑

n=0

π/2√
2(n+ 1)π

=
1

2
√
2

N∑

n=0

1

n+ 1

(8.28)

which diverges as N → ∞. But if taking the Fourier transform of an integrable function

f(x) can lead to a function f̃(k) that is not itself integrable, how do we make sense of the

Fourier inversion theorem?

Recall from section 6.3 that a Schwartz function ψ is an infinitely smooth function

obeying

sup
x∈R

xm ψ(n)(x) < ∞ for all m,n ∈ N. (8.29)

so that in particular ψ decay rapidly as |x| → ∞. As before,

|ψ̃(k)| =
∣∣∣∣
∫ ∞

−∞
e−ikx ψ(x) dx

∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣e−ikx ψ(x)
∣∣∣ dx =

∫ ∞

−∞
|ψ(x)| dx < ∞ (8.30)

and so that ψ̃(k) is bounded for all k ∈ R. What is more, since all the functions xmψ(n)(x)

of involving monomials times derivatives of a Schwartz function are themselves infinitely

smooth and bounded, their Fourier transforms also exist. Explicitly, we have

ψ̃(m)(k) =
dm

dkm

∫ ∞

−∞
e−ikx ψ(x) dx = F [(−ix)mψ(x)] (8.31)

where we are justified in differentiating under the integral since xmψ(x) is indeed integrable

as ψ(x) is a Schwartz function. In particular, since F [xmψ(x)] is bounded for all k ∈ R,
all the derivatives of ψ̃ exist and are bounded, so ψ̃ is infinitely smooth. Likewise

knψ̃(k) = in
∫ ∞

−∞

dne−ikx

dxn
ψ(x) dx = (−i)n

∫ ∞

−∞
e−ikx ψ(n)(x) dx = (−i)nF [ψ(n)(x)] (8.32)
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which is again bounded for all k ∈ R. Combining these results shows that the Fourier

transform ψ̃(k) of a Schwartz function ψ(x) is again a Schwartz function. Thus, the Fourier

transform is a map F : S(R) → S(R), and by iterating the duality (8.19) four times we

find the map
1

(2π)4
F4 : S(R) → S(R) (8.33)

is actually the identity: Up to a numerical factor, taking the (forwards) Fourier transform

of a Schwartz function four times in succession just reproduces the Schwartz function.

To go further and define Fourier transforms for more general objects, less well–behaved

than Schwartz functions, we first note that if φ,ψ ∈ S(R) then the derivation of (8.23) is

sound and

(Fφ,Fψ) = 2π(φ,ψ) . (8.34)

Since F ◦F−1 = 1 for Schwartz functions, we can equivalently write this result as (Fφ, ψ̃) =

2π(φ,F−1ψ̃), or just

(Fφ,χ) = 2π(φ,F−1χ) , (8.35)

where χ is again some Schwartz function. Now we recall from chapter 6 that we can treat

φ ∈ S(R) as a special case of a tempered distribution Tφ ∈ S ′(R), which acts on a test

function ψ via Tφ[ψ] = (φ,ψ). In the case that T ∈ S ′(R) is a more general tempered

distribution, we similarly define its Fourier transform FT by

FT [χ] = 2π T [F−1χ] (8.36)

so as to agree with (8.35) in the restricted case. On the lhs here we have the Fourier

transformed distribution FT acting on some test function χ ∈ S(R), whilst on the rhs we

have the original distribution T acting on the inverse Fourier transform of χ. Again, this

definition will be compatible with the idea of obtaining tempered distributions as the limit

of a sequence of test functions.

Let’s now see how this definition works in practice.

8.3.1 Fourier transform of the Dirac δ

We’ve seen that, if we want to solve a driven pde Ly(x) = f(x) then its often useful to first

construct a Green’s function G(x, ξ) obeying LG(x, ξ) = δ(x− ξ). Thus, if we wish to use

Fourier transforms to solve such equations, we’ll need to understand the Fourier transform

of distributions such as the δ-function.

In this case, it’s easy to obtain the transform naively using the heuristic object δ(x).

We simply compute

F [δ(x)] =

∫ ∞

−∞
e−ikx δ(x) dx = 1 . (8.37)

Let’s repeat this using our general definition for Fourier transforms of distributions. Ac-

cording to (8.36), for any test (Schwartz) function φ we have

Fδ[φ] = 2π δ[F−1φ] (8.38)
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and using the definition of the Dirac δ acting on F−1φ (thought of as a function of x), we

obtain

2π δ[F−1φ] = 2π δ

[
1

2π

∫ ∞

−∞
eikx φ(k) dk

]
=

∫ ∞

−∞
φ(k) dk = (1,φ) (8.39)

extracting the value of F−1φ at x = 0. The net result is just the inner product of the test

function φ with the constant function 1. Recalling the definition of distributions that also

happen to be ordinary functions, we see that the Fourier transform of the Dirac δ is just 1!

The Fourier inversion theorem assures us that the Fourier transform of 1 itself should

be 2π times a δ-function. However, this claim is not obvious, since it’s far from clear what

we should make of the integral
∫∞
−∞ e−ikx dx. To make progress, we treat 1 as a tempered

distribution T1. Then according to (8.36), the transformed distribution FT1 is determined

by

FT1[ψ] = 2π T1[F−1ψ] = 2π (1,F−1ψ) (8.40)

where the second equality recognizes that T1 is the distribution associated to an ordinary

function, 1. Thus, to understand the Fourier transform of 1 we only need take the inverse

Fourier transform of a Schwartz function ψ, which is always well–defined. Comparing

with (8.38) we have indeed

FT1[ψ] = 2π (1,F−1ψ) = 2π δ[F−1ψ] . (8.41)

Thus, in the world of tempered distributions, we have
∫ ∞

−∞
e−ikx dx = 2π δ(k) (8.42)

and the Fourier transform of 1 is indeed 2π times the Dirac δ.

The translation and rephasing properties of the Fourier transform provide us with the

simple corollaries

F [δ(x− a)] = e−ika and F [e−i"x] = 2π δ(k − ") , (8.43)

whilst we also have
F [cos("x)] = π (δ(k + ") + δ(k − "))

F [sin("x)] = iπ (δ(k + ")− δ(k − ")) .
(8.44)

In particular, a highly localised signal in physical space (such as a δ function) has a very

spread out representation in Fourier space. Conversely, a highly spread out (yet periodic)

signal in physical space (such as a sine wave) is highly localised in Fourier space. This

is further illustrated in problem sheet 3, where you compute the Fourier transform of a

Gaussian. Going further, the fact that Fourier transforms turns multiplication by x into

differentiation wrt k shows that the Fourier transform of a polynomial involves deriva-

tives of δ-functions, and conversely the Fourier transform of derivatives of δ-functions is a

polynomial.

For another example, consider the Heaviside step function

Θ(x) =

{
1 x > 0

0 else.
(8.45)
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We first note that Θ(x) = limε→0+ Θ(x) e−εx and that for any ε > 0

∫ ∞

−∞
e−ikxΘ(x) e−εx dx =

∫ ∞

0
e−(ε+ik)x dx =

1

ε+ ik
(8.46)

so that, naively taking ε → 0, we might think that the Fourier transform of Θ(x) is

just 1/ik. However, the presence of ε was clearly important to ensure convergence of the

integral as x → ∞, so to really understand what this transform means we must treat FΘ

as a distribution and see how it acts on a test function φ. For finite ε and any small δ > 0

we have

FΘ[φ] = lim
ε→0+

∫ ∞

−∞

1

ε+ ik
φ(k) dk

=

∫

|k|>δ

1

ik
φ(k) dk + lim

ε→0+

∫ δ

−δ

[
φ(k)− φ(0)

ε+ ik
+

φ(0)

ε + ik

]
dk

(8.47)

where it is clearly safe to take ε → 0 whenever |k| > δ > 0. For the remaining terms, as

δ → 0 we have ∫ δ

−δ

φ(k)− φ(0)

ε+ ik
dk =

1

i

∫ δ

−δ

dφ

dk
dk + O(ε) = O(ε) (8.48)

since the test function φ is smooth, and finally

lim
ε→0+

∫ δ

−δ

φ(0)

ε+ ik
dk = −iφ(0) lim

ε→0+
ln(ε+ ik)

∣∣∣∣
δ

−δ

= πφ(0) .

(8.49)

Combining the pieces, altogether we have

FΘ[φ] = πφ(0) + lim
δ→0

∫

|k|>δ

1

ik
φ(k) dk (8.50)

showing that, as a distribution, the Fourier transform of Θ(x) is

F [Θ(x)] =






1

ik
k -= 0

πδ(k) k = 0 .
(8.51)

This is sometimes written as F [Θ(x)] = p.v. (ik)−1 + πδ(k) where the letters p.v. stand

for the (Cauchy) principal value and mean that we should exclude the point k = 0 from

any integral containing this term. What happens at k = 0 is instead governed by the

δ-function.

8.4 Linear systems and transfer functions

Fourier transform are often used in the systematic analysis of linear systems which arise

in many applications. Suppose we have a linear operator L acting on input I(t) to give

output O(t). For example, L may represent the workings of an amplifier that can modify

both the amplitude and phase of individual frequency components of an input signal.
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We first write the input signal in terms of its Fourier transform Ĩ(ω):

I(t) =
1

2π

∫

R
eiωt Ĩ(ω) dω

via the Fourier inversion theorem. This expresses the input as a linear combination of com-

ponents with various definite frequencies ω, with the amplitude and phase of each compo-

nent given respectively by the modulus and argument of Ĩ(ω). In this context, it is some-

times called the synthesis of the input, while the Fourier transform Ĩ(ω) =
∫
R e−iωt I(ω) dω

itself is known as the resolution of the pulse (into its frequency components).

Now suppose that L modifies the amplitudes and phases via a complex function R̃(ω)

to produce the output

O(t) =
1

2π

∫

R
eiωt R̃(ω) Ĩ(ω)dω . (8.52)

R̃(ω) is called the transfer function of the system and its inverse Fourier transform R(t) is

called the response function34. Thus the transfer and response functions are related via

R̃(ω) =

∫

R
eiωtR(t) dt and R(t) =

1

2π

∫

R
eiωt R̃(ω) dω .

Equation (8.52) shows that R(t) is the output O(t) of the system when the input has

Ĩ(ω) = 1 — in other words when the input signal is I(t) = δ(t). Hence the response

function R(t) is closely related to the Green’s function when L is a differential operator.

According to (8.52) and the convolution theorem, the output is

O(t) = F−1[R̃(ω)Ĩ(ω)] = R ∗ I(t) =
∫

R
R(t− u) I(u) du (8.53)

Causality (and the absence of a background hum!) implies that if the input signal vanishes

for all t < t0 then there can be no output signal before t0 either. Since the response

function R(t) is the output when the input I(t) = δ(t), and this input certainly vanishes

for all t < 0, we see that R(t) = 0 for all t < 0. If we now assume that the was no input

signal before t = 0 then (8.53) becomes

O(t) =

∫ ∞

−∞
R(t− u) I(u) du =

∫ t

0
R(t− u) I(u) du (8.54)

so that the output signal is formally the same as we found in our previous expressions in

section 7.5 with Green’s functions for initial value problems.

8.4.1 General form of transfer functions for ode’s

We now consider the case with the relation linear finite order o.d.e. LmI(t) = LnO(t),

where Lm and Ln are the differential operators

Lm =
m∑

j=0

bj
dj

dtj
and Ln =

n∑

i=0

ai
di

dti

34Warning! In various texts both R(t) and R̃(ω) are referred to as the response or transfer function, in

different contexts.
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with constant coefficients (ai, bj). For simplicity, we’ll consider the case m = 0 so that the

input acts directly as a forcing term, but the fully general case is not much more difficult.

Taking Fourier transforms we obtain

Ĩ(ω) =

[
n∑

i=0

ai(iω)
n

]
Õ(ω) (8.55)

and therefore

R̃(ω) =
1

[a0 + a1iω + · · ·+ an(iω)n]
. (8.56)

Thus the transfer function is a rational function with an nth degree polynomial in (iω)

as the denominator. By the fundamental theorem of algebra, this polynomial will have n

complex roots, counted with multiplicity. Assuming these roots are at point cj ∈ C and

allowing for repeated roots, we write

R̃(ω) =
1

an

J∏

j=1

1

(iω − cj)kj
(8.57)

where kj is the multiplicity of the root at cj , and
∑J

j=1 kj = n. Using partial fractions,

this can be written as a sum of terms of the form

Γmj

(iω − cj)m
where 1 ≤ m ≤ kj (8.58)

where Γmj are constants so that

R̃(ω) =
J∑

j=1

kj∑

m=1

Γmj

(iω − cj)m
. (8.59)

To find the response function R(t), we need to compute the inverse Fourier transform of

this function.

Let’s define h̃m(ω) := 1/(iω−α)m+1 with m ≥ 0; by linearity of the Fourier transform,

our job is done once we compute F−1[h̃m]. We’ll cheat. I’ll give you the answer and we’ll

check it’s correct by computing its Fourier transform35. Consider the function

h0(t) :=

{
eαt t > 0

0 else.
(8.60)

Provided Re(α) < 0 the Fourier transform is easily computed to be

h̃0(ω) =

∫ ∞

−∞
e−iωt h0(t) dt =

∫ ∞

0
e−iωt eαt dt =

1

iω − α
(8.61)

[Note that if Re(α) > 0 then the above integral is certainly divergent. Indeed recalling the

theory of linear constant coefficient ode’s, we see that the cj ’s above are the roots of the

35Going in the ‘forwards’ direction is most simply done with some complex analysis you’ll meet next

term, but you can also do it by differentiating under the integral if you’re careful.
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auxiliary equation and the equation has solutions with terms ecjt which grow exponentially

if Re(cj) > 0. Such exponentially growing functions are problematic for Fourier theory,

so here we will consider only the case Re(cj) < 0 for all j, corresponding to ‘stable’ odes

whose solutions do not grow unboundedly as t → ∞. The whole subjects of stability and

control grow from these remarks.]

Next consider the function

h1(t) :=

{
teαt t > 0

0 else,
(8.62)

so h1(t) = th0(1). Recalling that ‘multiplication becomes differentiation’ for Fourier trans-

forms (so F [xf(x)] = idF [f ]/dk), we obtain

h̃1(ω) = i
d

dω

1

iω − α
=

1

(iω − α)2
(8.63)

(which may also be derived directly by evaluating the
∫∞
0 teαte−iwt dt). Similarly (or using

proof by induction), for Re(α) < 0 we have

hm(t) =






tm

m!
eαt t > 0

0 else
has Fourier transform h̃m(ω) =

1

(iω − α)m+1
(8.64)

with m ≥ 0. Thus, for such stable systems, we can use this in (8.54) to easily construct the

output from the input. Notice that all the hm(t) decay as t → ∞, but after t = 0 they can

initially increase to some finite time maximum (at t = tm = m/|α| if α < 0 and real for

example). We also see that the response function R(u) = 0 for u < 0 so that, as expected,

the upper limit in (8.53) should be t and the output O(t) depends only on the input at

earlier times.

To see more clearly the relation of above formalism to Green’s functions, let’s consider

the familiar equation
d2y

dt2
+ 2p

dy

dt
+ (p2 + q2)y = f(t) (8.65)

which, provided p > 0, describes the motion of a forced, damped oscillator. Since p > 0,

the drag force −2py′ acts opposite to the direction of velocity so the motion is damped.

We assume that the forcing term f(t) is zero for t < 0. Also y(t) and y′(t) are also zero for

t < 0 and we have initial conditions y(0) = y′(0) = 0. The Fourier transformed equation is

(iω)2ỹ + 2ipωỹ + (p2 + q2)ỹ = f̃ and so

ỹ =
f̃

−ω2 + 2ipω + (p2 + q2)
=: R̃(ω) f̃(ω) (8.66)

which solves the equation algebraically in Fourier space. To find the solution in real space

we take the inverse Fourier transform to find

y(t) =

∫ t

0
R(t− u) f(u)du =

∫ t

0

[
1

2π

∫ ∞

−∞

eiω(t−u)

p2 + q2 + 2ipω − ω2
dω

]
f(u) du . (8.67)
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where the quantity in square brackets is the response function R(t − u). Now consider

LR(t−u), using this integral formulation. Assuming that formal differentiation within the

integral sign is valid we have

d2

dt2
R(t− u) + 2p

d

dt
R(t− u) + (p2 + q2)R(t− u)

=
1

2π

∫ ∞

−∞
eiω(t−u)

[
(iω)2 + 2ipω + (p2 + q2)

p2 + q2 + 2ipω − ω2

]
dω

=
1

2π

∫ ∞

−∞
eiω(t−u) dω = δ(t− u),

(8.68)

where we used that 1 is the Fourier transform of the δ-function. Therefore, the Green’s

function G(t, u) is simply the response function R(t − u) by (mutual) definition. In the

problem sheets you’re asked to fill in the details of this example, computing both R(t) and

the Green’s function explicitly.

Fourier transforms can also be used to solve ode’s on the full line R, so long as the

functions involved have sufficiently good asymptotic properties for the Fourier integrals to

exist. As an example consider suppose y : R → R solves the ode

d2y

dx2
−A2y = −f(x) (8.69)

and is such that y → 0 and y′ → 0 as |x| →∞ . We take A to be a positive real constant.

Taking the Fourier transform, we can solve the equation in Fourier space trivially to find

ỹ(k) =
f̃(k)

A2 + k2
(8.70)

and so to recover the solution y(x) we need to take the inverse Fourier transform of the

product f̃(k)× 1/(A2+ k2). From the convolution theorem, this will be the convolution of

f(t) with a function whose Fourier transform is 1/(A2 + k2). Consider the function

h(x) =
e−µ|x|

2µ
where µ > 0 . (8.71)

Since h(x) is even, its Fourier transform can be written as

h̃(k) = Re

(
1

µ

∫ ∞

0
exp [−(µ+ ik)x] dx

)
=

1

µ
Re

(
1

µ+ ik

)
=

1

µ2 + k2
, (8.72)

which identifies h(x) as the function we seek. The convolution theorem then gives

y(x) =
1

2A

∫ ∞

−∞
e−A|x−u| f(u) du . (8.73)

This solution is clearly in the form of a Green’s function expression. Indeed the same

expression may be derived using the Green’s function formalism of chapter 7, applied to

the infinite domain (−∞,∞) and imposing suitable asymptotic boundary conditions on

the Green’s function for |x| → ∞.
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8.5 The discrete Fourier Transform

In realistic, physical situations or in numerical applications, we cannot add expect to know

the value of f(x) for every x ∈ R, but only within some finite interval x ∈ [−R,S]. However,

provided |f(x)| is small outside this range, we may reasonably expect to approximate the

Fourier transform by

f̃(k) =

∫ ∞

−∞
e−ikx f(x) dx ≈

∫ S

−R
e−ikx f(x) dx . (8.74)

Even within this range we cannot numerically evaluate this integral by computing e−ikx f(x)

at every value of x, but will rather have to sample it at some finite set of points. For

simplicity, let’s assume these points are equally spaced, at xj = −R + j(R + S)/N for

j = 0, . . . , N − 1 where N is some large positive integer. Then we can set

f̃(k) ≈ R+ S

N

N−1∑

j=0

e−ikxj f(xj) . (8.75)

Similarly, although the Fourier transform was originally valid for all k ∈ R, in practice our

computer’s memory can only store the values of f̃(k) for some finite set values of k. It’s

convenient to choose these to be at k = km := 2πm/(R + S) for some integer(s) m. Then

we have

f̃(km) ≈ (R+ S) eikmR

N

N−1∑

j=0

e−2πijm/N f(xj) =
(R+ S) eikmR

N

N−1∑

j=0

f(xj)ω
−mj (8.76)

where ω = e2πi/N in an N th root of unity.

Thus, for numerical purposes, computing Fourier transforms amounts to computing

expressions of the form F (m) := 1
N

∑N−1
j=0 f(xj)ω−mj . Of course, unlike the exact Fourier

transform, these truncations have thrown away much of the information about our function:

we obviously cannot see structures that vary on scales shorter than our sampling interval

(R+S)/N . Furthermore, since it is built fromN th roots of unity, evidently our approximate

function obeys F (m+N) = F (m) whereas our original function f(x) and its exact Fourier

transform f̃(k) were not assumed to obey any periodicity conditions36. Nevertheless, we

shall see that knowing the values of the sums F (m) for all m = 0, 1, . . . , N − 1 is sufficient

to reproduce the exact values of f(x) at all the points xk.

To proceed, let G be the set {1,ω,ω2, . . . ,ωN−1} of N th roots of unity, and let f :

G → C and g : G → C be functions on G. The space of such functions is a complex vector

space, and we can define an inner product on this space by

(f, g) =
1

N

N−1∑

j=0

f(ωj)∗ g(ωj) (8.77)

36In fact, if |f(x)| → 0 sufficiently rapidly as |x| → ∞ that we are justified in ignoring x /∈ [−R,S] then

f̃(k) will also decay as m → ∞.
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in analogy to our earlier treatment of functions on R. It is a straightforward exercise to

check that this inner product obeys the usual sesquilinearity properties

(f, c1g1 + c2g2) = c1(f, g2) + c2(f, g2) and (g, f)∗ = (f, g)

for constants c1,2, and that (f, f) ≥ 0 with equality iff f(ω) = 0 identically. Next, we claim

that the functions em(ωj) := ωmj obey (em, en) = δmn and so form a set of basis functions

on G that are orthonormal wrt ( , ). To see this, note that

(em, em) =
1

N

N−1∑

j=0

ω−mj ωmj =
1

N

N−1∑

j=0

1 = 1 (8.78)

whilst whenever m -= n we have

(en, em) =
1

N

N−1∑

j=0

ω(m−n)j =
1

N

ω(m−n)N − 1

ω(m−n) − 1
= 0 (8.79)

since ω(m−n)N = 1 for m -= n and ω an N th root of unity.

These results provide us with a Fourier expansion for functions on G. We can expand

f(ωm) =
N−1∑

j=0

f̂j em(ωj) where f̂k ≡ (ek, f) =
1

N

N−1∑

k=0

ω−jk f(ωk) . (8.80)

In fact, since G here is just a finite set, there are no issues about convergence to worry

about, and the validity of this expansion is easily proved using the orthonormality of the

{em}. Likewise, Parseval’s theorem is easily proved by writing

(f, f) =
1

N

N−1∑

j=0

f(ωj)∗ f(ωj) =
1

N

N−1∑

j=0




N−1∑

l,m=0

f̂∗
m f̂l em(ωj)∗ el(ω

j)





=
∑

l,m

f̂∗
m f̂l




N−1∑

j=0

em(ωj)∗ el(ω
j)



 =
∑

l,m

f̂∗
m f̂l δml =

N−1∑

m=0

f̂∗
m f̂m = N(f̂ , f̂) ,

(8.81)

with no complications about exchanging the order of the finite sums. Again the Fourier

transform preserves the inner product.

Now we can understand why knowledge of the sums

F (m) =
1

N

N−1∑

j=0

f(xj)ω
−mj

for all m is sufficient to reproduce the exact values of the sampled function f(x) at the

sampling points x = {x0, x1, . . . , xN−1}. Defining a function g : G → C by g(ωj) := f(xj),

we have F (m) = (em, g) and therefore

f(xj) =
N−1∑

m=0

ωjm F (m) (8.82)
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so that the f(xj) can be recovered exactly from the F (m).

Since the discrete Fourier transform acts linearly on the space of functions fromG → C,
and G is a finite set, we can represent it by a matrix. Let U be the N × N symmetric

matrix with entries Umj = em(ωj) = ωmj = ej(ωm) with m, j = 0, 1, 2, . . . , N − 1. Then

if we let f be the (column) vector f = (f(x0), f(x1), . . . , f(xN−1))T the discrete Fourier

transform may be written as the matirx multiplication

f̂ = Uf . (8.83)

The matrix U/
√
N is in fact unitary, so U−1 = U†/N . To see this, note that U† has

entries U †
jk = ek(ωj)∗ = ω−jk and so

(UU†)mk =
N−1∑

j=0

em(ωj) e∗k(ω
j) = N(ek, em) = Nδmk (8.84)

from the orthonormality properties of the basis functions {em}. Thus we also have

f = U−1f̂ =
1

N
U†f̂ (8.85)

for the inverse transform.

Hopefully, you’ve been awake enough throughout this course to notice that the Fourier

series for functions37 f : Tn → C , Fourier transforms for functions f : Rn → C and discrete

Fourier transform for functions f : G → C have all looked rather similar. In particular, in

each case we have an Abelian group G (either Tn, Rn or G) and maps ek : G → C, given
on Tn and Rn by exp(ik · x), with k ∈ Zn and k ∈ Rn respectively, and by ek(ωj) = ωjk

on G. These functions all obey

ek(x+ y) = ek(x) ek(y) (8.86)

and ek(I) = 1 where I is the identity element of the group G (0 in Rn, 1 in Tn and 1 in

G). In fact, it’s not much more work to establish Fourier theory for any Abelian group,

though we won’t do it here. There’s also a powerful generalization of Fourier theory to

non–Abelian groups, at least for compact groups, which you can read about here.

8.5.1 Fast Fourier transforms

Non-examinable. All the best bits are.

In the months that followed the Cuban missile crisis, geopolitical tensions were run-

ning high. The realization of just how close the world had come to a nuclear apocalypse

persuaded many that a curb on the development of nuclear weapons was required, and

negotiations were underway to work towards a Nuclear Test Ban Treaty. A major problem

was that neither side trusted the other to stick to the terms of the Treaty. In particular,

37Here Tn = S1 × S1 × · · · × S1 is an n-dimensional torus. Equivalently, we have considered this case

when Fourier analysing functions periodic in n variables.
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the US wanted to be sure they could tell whether or not a nuclear test had taken place

deep within the Soviet Union without having to undertake politically sensitive visits to the

actual site. Overground tests were relatively easy to spot, not least because of the fallout

effects, but detecting underground tests was another matter.

During a meeting of President Kennedy’s Scientific Advisory Committee, John Tukey

of Princeton got interested in a proposal to place many sensitive seismological devices at

locations surrounding the Soviet Union. These devices could monitor vibrations, recording

this information over time. But in order to tell whether a test had occurred, one would

have to separate out the signal of the explosion from other noises and rumblings of the

Earth’s crust. This called for Fourier analysis, which would separate out the frequencies of

vibration, but the large landmass of Soviet Russia and the long period of time for which

monitoring would be required meant that a powerful computer would be needed to perform

the analysis. The problem is that to actually compute f̂(m) at even a single value of m

using the formula

f̂(m) ≈ 1

N

N−1∑

j=0

ω−mj f(xj) (8.87)

obtained above is very computationally expensive. Even if our computer is provided with

a library containing the values of ω−mj , the f(xj) will depend on what the seismometers

record, so we shall need at least N − 1 additions and N + 1 multiplications: a total of 2N

operations to compute f̂(m) for a single value of m. Thus, even given all the values of

ω−mj , computing f̂(m) for all m = 0, . . . , N − 1 this way will thus take 2N2 operations.

Together with James Cooley at IBM, Tukey realised that a much more efficient al-

gorithm could be obtained by breaking the task down into smaller chunks. Suppose that

N = 2M for some integer M . Then for a function on the N = 2M th roots of unity we can

write

1

N

N−1∑

j=0

ω−mj g(ωj) =
1

2M

2M−1∑

j=0

ω−mj g(ωj)

=
1

2

[
1

M

M−1∑

k=0

ω−2kj g(ω2k) +
1

M

M−1∑

k=0

ω−(2k+1)m g(ω2k+1)

] (8.88)

where in going to the second line we’ve separated out the even (j = 2k) and odd (j = 2k+1)

terms in the sum. Now let η denote an M th root of unity and define G(ηk) ≡ g(ω2k) and

H(ηk) ≡ g(ω2k+1). Then we can write the rhs of (8.88) as

1

2

[
1

M

M−1∑

k=0

η−mk G(ηk) +
ω−m

M

M−1∑

k=0

η−mk H(ηk)

]
=

1

2

[
Ĝ(m) + ω−mĤ(m)

]
, (8.89)

where the final equality identifies the sums as being the discrete Fourier transforms of G

and H as functions on the M th roots of unity.

Given the values of Ĝ(m), Ĥ(m) and ω−m for some specific m, these expressions

show that we can compute the value of f̂(m) using no more than one addition and two
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multiplications. Consequently, given all these values, we can compute f̂(m) for all m ∈
{0, 1, . . . , N − 1} using at most 3 × 2M = 6M operations. Suppose it takes no more

that PM operations to compute the discrete Fourier transform of any function on the M th

roots of unity. Computing the value of ω−m for every 0 ≤ m < 2M will cost no more

than 2M multiplications, and so we will be able to compute the value of f̂(m) at every

m ∈ {0, 1, . . . , N − 1} using no more than P2M = 8M + 2PM operations.

Now to the point. Let’s prove inductively that whenN = 2n, PN ≤ 2n+2n = 4N log2N

— note that for N 0 1 this is a vast saving over the ∼ 2N2 operations required by a ‘direct’

approach. When n = 1 the Fourier transform is completely given by

F̂ (1) =
1

2
(F (1) + F (−1))

F̂ (−1) =
1

2
(F (1) + (−1)F (−1)) ,

(8.90)

and these values clearly take no more than 5 operations on {F (1), F (−1)} to obtain. Thus,

certainly P2 = 5 ≤ 8. Assuming the result when N = 2m for some m, our recurrence then

shows that P2m+1 ≤ 8 · 2m + 2× 2m+2m = 2m+3(m+ 1) and the induction holds.

Overnight, Cooley and Tukey’s algorithm revolutionized our ability to actually com-

pute Fourier transforms numerically. Aside from Nuclear Test Ban Treaties, nowadays

their results (and further refinements) lie behind essentially all the image processing com-

putations that enable you see what your friends are up to via iPhone. But they weren’t

the first to get there. Back in 1805 Gauss had been trying to reconstruct the orbits of

comets Pallas and Juno from their various intermittent observations. In the margins of his

notebooks, he’d discovered Cooley & Tukey’s algorithm for himself as a means to speed up

his calculations.
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