1B Methods – Example Sheet 4

Please email me with any comments, particularly if you spot an error. Problems marked with an asterisk (*) are optional; only attempt them if you have time.

- 1. (a) Find the characteristic curves of $\partial_x u + \partial_y u = 0$, and find u if $u(0, y) = y^3$.
 - (b) Solve $y\partial_x u + x\partial_y u = 0$ subject to $u(0, y) = e^{-y^2}$. In which region of the plane is the solution uniquely determined?
 - (c) Find u such that $\partial_x u + \partial_y u + u = e^{x+2y}$, and u(x,0) = 0.
- 2. The *backward* diffusion equation may be defined as

$$\partial_t u + \partial_x^2 u = 0.$$

Consider a domain $0 < x < \pi$, with $u(0,t) = 0 = u(\pi,t)$, and u(x,0) = U(x). By using the method of separation of variables, show that the problem is not well-posed. [It may be helpful to scale the eigenfunctions you calculate similarly to the example in the lectures.]

3. (a) Determine the regions of the plane where Tricomi's equation,

$$\partial_x^2 u + x \,\partial_y^2 u = 0 \,,$$

is of elliptic, parabolic and hyperbolic types. Derive its characteristics and canonical form in the hyperbolic region.

(b) Reduce the equation

$$\partial_x^2 u + y \,\partial_y^2 u + \frac{1}{2} \partial_y u = 0$$

to the simple canonical form $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$ in its hyperbolic region, and hence show that

$$u=f(x+2\sqrt{-y})+g(x-2\sqrt{-y}),$$

where f and g are arbitrary functions.

- 4. Consider a Dirichlet Green's function $G(\mathbf{x}; \mathbf{y})$ for the Laplacian defined inside some compact region $\Omega \subset \mathbb{R}^3$. By using Green's second identity, show that $G(\mathbf{x}; \mathbf{y}) = G(\mathbf{y}; \mathbf{x})$ for all $\mathbf{x} \in \Omega$ with $\mathbf{x} \neq \mathbf{y}$.
- 5. Suppose u is harmonic inside a compact domain $\Omega \subset \mathbb{R}^2$, with boundary $\partial \Omega$. Show that

$$u(\mathbf{y}) = \frac{1}{2\pi} \oint_{\partial \Omega} \left[u(\mathbf{x}) \,\hat{\mathbf{n}} \cdot \left(\nabla \log |\mathbf{x} - \mathbf{y}| \right) - \log |\mathbf{x} - \mathbf{y}| \,\hat{\mathbf{n}} \cdot \left(\nabla u(\mathbf{x}) \right) \right] \, dl \,,$$

where dl is an arc element of $\partial \Omega$, with $\mathbf{x} \in \partial \Omega$ and $\mathbf{y} \in \Omega$.

- 6. Let $\Omega = \{(x, y) \in \mathbb{R}^2 | y \ge 0\}$ and suppose $\phi : \Omega \to \mathbb{R}$ solves $\nabla^2 \phi = 0$ inside Ω , subject to the boundary conditions $\phi(x, 0) = f(x)$ for some known function f, and $\lim_{y\to\infty} \phi = 0$.
 - (a) Find the Green's function for this problem.
 - (b) Hence show that the solution is given by Poisson's integral formula:

$$\psi(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x-\xi)^2 + y^2} d\xi \,. \label{eq:phi}$$

- (c) Derive the same result by taking Fourier transforms with respect to x (assuming all transforms exist).
- (d) Find (in closed form) and sketch the solution for various y > 0 when $f(x) = \psi_0$, |x| < a, and f(x) = 0 otherwise. Sketch the solution along $x = \pm a$.
- 7. A string is at rest for all t < 0 and under tension. At t = 0 the string receives an instantaneous transverse blow which imparts an initial velocity $V \delta(x-x_0)$, where V is a constant and $x_0 > 0$. Find the position of the string for all t > 0 if:
 - (a) The string is infinitely long and free to osillate.
 - (b) The string is pinned down at x = 0.

Compare the two solutions.

8. Let $\Omega = \{(x,t) \in \mathbb{R}^2\}$ (*i.e.*, x and t non-negative). Suppose θ solves the forced heat equation

$$\partial_t \theta - D \partial_x^2 \theta = f(x, t)$$

inside Ω , and that $\theta(0,t) = h(t)$ and $\theta(x,0) = \Theta(x)$. By considering $V(x,t) = \theta(x,t) - h(t)$, use the method of images to obtain the general solution.

 9^* . Show that the Dirichlet Green's function for the Laplacian for the *interior* of a spherical domain of radius a is

$$G(\mathbf{x};\mathbf{y}) = -\frac{1}{4\pi|\mathbf{y}|} \left[\frac{|\mathbf{y}|}{|\mathbf{x} - \mathbf{y}|} - \frac{a}{|\mathbf{x} - \mathbf{y}^*|} \right],$$

where $\mathbf{y}^* := a^2 \mathbf{y} / |\mathbf{y}|^2$. Also derive the Dirichlet Green's function for the Laplacian in the region *exterior* to this sphere.